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Zusammenfassung

Diese Arbeit beschreibt eine Methode zum Tre�en von schnellen Entscheidungen in
sich schnell verändernden Situationen. Der vorgestellte Ansatz wird im Rahmen des
Entscheidungsproblems im RoboCup-Umfeld untersucht. In dieser Umgebung ist es
oft schwierig, die richtige Aktion für eine Aufgabe auszuwählen. Das Ergebnis einer
Aktion kann von einer Vielzahl von Umweltein�üssen abhängen, wie zum Beispiel
die Position des Roboters auf dem Feld oder die Positionen von Hindernissen. Au-
ÿerdem ist die Wahrnehmung heterogen, unsicher und unvollständig. Der Ansatz
ist inspiriert von der psychologischen Simulationstheorie. Hierbei werden Vorwärts-
Simulationen verwendet, die dem Roboter erlauben seine Aktionen zu simulieren
und die Resultate vorherzusagen. Das Ergebnis jeder Aktion wird auf Basis des
geschätzten Zustands der Umgebung simuliert.

Die Simulation jeder Aktion wird in eine Reihe von simplen deterministischen Si-
mulationen aufgespaltet, basierend auf der Unsicherheit des geschätzten Zustands
und dem Aktions Modell. Jeder Sample wird dann separat evaluiert und anschlie-
ÿend addiert. Die zusammengefügten Bewertungen werden dann mit denen anderer
Aktionen verglichen, um die beste Aktion zu bestimmen. Dies erlaubt es, schnell
unterschiedliche Perzeptionsdaten in die Simulation einzubringen, eine stabile Ent-
scheidung zu berechnen und die Unsicherheit der Entscheidung einzubringen. Dieser
Ansatz wurde für die Kick-Entscheidungen im RoboCup-SPL-Umfeld implementiert
und wird seit 2015 vom Nao Team Humboldt eingesetzt. Der Simulationsansatz wird
evaluiert in einer abstrakten Simulation, isolierten Experimenten auf dem Roboter
und auf Basis realer Spieldaten von RoboCup Meisterschaften.
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Abstract

This thesis describes a method for making fast decisions in highly dynamic situa-
tions. This approach addresses the decision problem within the RoboCup domain.
In this environment, selecting the right action is often a challenging task. The out-
come of a particular action may depend on a wide variety of environmental factors,
such as the robot's position on the �eld or the location of obstacles. Also, the per-
ception is often heterogeneous, uncertain, and incomplete. This work is inspired by
the simulation theory of cognition. This approach utilizes forward simulations which
allow the robot to simulate actions and predict their consequences. The outcome of
each possible action is simulated, based on the estimated state of the situation.

The simulation of a single action is split into a number of simple deterministic sim-
ulations � samples � based on the uncertainties of the estimated state and of the
action model. Each of the samples is then evaluated separately, and the evaluations
are combined and compared with those of other actions to inform the overall deci-
sion. This allows us to e�ectively combine heterogeneous perceptual data, calculate
a stable decision, and reason about its uncertainty. This approach was implemented
for the kick selection task in the RoboCup SPL environment and is actively used in
competitions since 2015. This work is evaluated in an abstract simulation environ-
ment, on isolated experiments on the NAO robot platform and on real game data
from the last RoboCup competitions.
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Chapter 1

Introduction

Researching robotics related questions especially when it involves more than one
robot tends to be expensive and time consuming. Experiments that require a high
number of repetitions might not be feasible on a real robot platform due to the
lack of availability, time constraints or possible wear down of the hardware. The
cost of physical robots also makes platform-speci�c research replication particularly
di�cult. Those problems can be addressed by simulation. In [27] Yuan Xu de�nes
simulation as the imitation of real systems, state of a�airs, or processes. The imita-
tion should represent certain behavioral key characteristics of a selected physical or
abstract system. The RoboCup initiative's aim is to beat the human World Soccer
Champion by 2050 with a fully autonomous team of robots in a football game ac-
cording to o�cial FIFA rules. When the �rst test for RoboCup Competitions was
�rst held in 1996 there were no suitable robot platform available therefore a 2D
Simulator was used. Over the years more soccer leagues for di�erent kind of robots
were introduced as more advanced and a�ordable robot platforms became available.
In 2008 the NAO robot was introduced in the Standard Platform League (SPL), a
league in which every team plays with the same robot. The same robot model was
introduced in the 3D-Simulation League as well.

Traditionally decision making in RoboCup soccer is mainly researched in the simu-
lation leagues. For example in [5] a ball interception behavior in the 2D simulation
league is realized via a mental simulation. An overview over the recent research in
simulation leagues can be found in [1]. In the SPL decision making has not received
as much attention as in the Simulation leagues due to the fact that localization, ball,
goal and line detection are still issues to some degree for most of the participating
teams. Also dealing with the limited processing power of the NAO robots remains a
challenge. Nonetheless some research exists regarding decision making in the SPL.
Some examples are [19] and [15]. The transfer of simulation results to a real robot
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2 CHAPTER 1. INTRODUCTION

is challenging due to the lack of accurate models of the environment and robots. In
his thesis Yuan Xu explores possibilities to narrow the gap between simulation and
reality [27]. His results have been used in the Nao Team Humboldt for developing
walking behavior, kick motions and team behavior in a simulator.

The simulation theory of cognition states that humans also simulate dynamic as-
pects of the environment and their perceived in�uence on it. This makes simulation
an appropriate tool for decision making in robots as well. The simulation theory
hypothesizes that thinking utilizes the same cognitive (and neural) processes as in-
teraction with the external environment. When thinking, actions are covert and
are assumed to generate, via associative brain mechanisms, the sensory inputs and
elicit further actions. In this view, thinking requires building a grounded model of
the environment - which is not composed of abstract symbols. Rather it is assumed
to re-instantiate and recombine experiences using the brains' system of perception,
action, and emotion. The mental model covertly simulates actions and their associ-
ated perceptual e�ects. A good introduction to the simulation theory can be found
in [10]. This idea has recently gained attention in Developmental Robotics. For an
overview see [21].

Internal forward simulation has already been successfully used as an inference method
in robotics. In [4] the authors investigate navigation of robots in a dynamic envi-
ronment. They use a simulation approach to envision movements of other agents
and pedestrians to enable avoiding dynamic obstacles while moving towards a goal.
In [13] the authors introduce a pancake baking robot which is planning its actions
using a full physical simulation of the outcome of possible actions. In [7] the authors
use a physics based action selection scheme to generate and select robot actions to
maximize the motion of the articulated object and thus learn a better model of the
object. [25] introduces Imagination-Augmented Agents to complement a RL algo-
rithm which solves puzzle games like sokoban. To estimate the state after an action
a simulation-based approach is used.

In this thesis the kick selection task is used as an example of a decision problem.
In the RoboCup SPL league there have been several attempts to implement a kick
selection method. In particular [6, 8] and [2] focus on a very similar task � the
selection of the optimal kick. In [6] a probabilistic approach is used to describe
the kick selection problem, which is then solved by using Monte Carlo simulation.
In [8] the kick is chosen to maximize a proposed heuristic game situation score
which re�ects the goodness of the situation. In [2] the authors use an instance
based representation for the kick actions and employ Markov decision process as an
inference method. In [3] the result of kicks is predicted geometrically. The result
depends on the desired distance and the kick angle. They claim that the ball will roll
in the direction in which the kicking foot moves before it hits the ball. The desired
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distance is used to calculate parameters for the foot trajectory. For the evaluation
of a kick a region is used, which is de�ned by the relative goal positions, a sideline
o�set and an opening angle of the robot which makes sure to always shoot forward.
By using the localization uncertainty and the variance in kick execution an angle
o�set is calculated for each kick. If the ball lands in the valid region by assuming
minimum and maximum angle o�set respectively the kick is considered valid. If
no valid action can be taken, the robot circles around the ball until a valid kick is
possible.

1.1 Contribution

For this thesis the proposed method was implemented on the Nao robot platform.
The method was evaluated based on video recordings and behavior logs from multiple
competitions. The videos were manually synchronized to the behavior logs and
labeled. The labeling tool was developed for this purpose. For further analysis the
same method was reimplemented in a 2D simulator. The simulation based method
improved upon the previous method.

1.2 Outline

This work describes a method for solving the kick selection problem in RoboCup us-
ing the idea of Simulation Theory of Cognition, a well known concept in psychology.
Although the experiments were conducted using the NAO robot, this method could
easily be applied to other robots in other situations as well. This approach was �rst
introduced in this form in [17]. In Chapter 2 the mathematical concepts that are
needed to understand the following chapters are presented. The following chapters
explain the simulation based idea, it's implementation for the kick selection prob-
lem as described in my previous work with some improvements and the evaluation
thereof. This thesis as well as the paper it is based on was written during my time
working with the Nao Team Humboldt.



Chapter 2

Prerequisites

In this chapter some basic concepts are outlined which will be used in later chapters.

2.1 Potential and Gradient Fields

Potential �elds are often used to realize reactive path planning approaches. They
were originally proposed in [11]. The main idea is that the robot is guided by
attracting and repelling forces. In the case of robot soccer attracting forces are the
ball and the opponent goal and repelling forces are opponent robots. Potential �elds
are a very common approach to path planning in mobile robots [12, 22, 20, 16, 26].

The forces are de�ned by a scalar �eld which assigns a scalar value called potential
to every point in the space. The scalar �eld for an attractive force is de�ned such
that the potentials increase with increasing distance and for a repeller such that
the potentials decrease with increasing distance. Let Uatt : Rn → R be the scalar
�eld of an target and Urep : Rn → R be the scalar �eld of an obstacle ∇Uatt and
∇Urep are the corresponding vector or gradient �elds. The vectors of the gradient
�elds point in the direction of the steepest ascent that means the vectors of ∇Uatt
point away from the attractor and the vectors of ∇Urep point towards the repeller.
Switching the sign of each vector gives the desired gradient �elds Fatt = −∇Uatt
and Frep = −∇Urep are called attractor and repeller �eld respectively. The resulting
force FG acting on the robot is de�ned as the sum of all attracting Fatt and repulsing
�elds Frep. The sum of all the scalar �elds

∑
U can be imagined as a mountain range

in which the obstacles are the mountains and the valleys are the targets. The robot
will move downwards to the valley because of FG. Local minima of

∑
U can pose

a problem in this approach and lead to a deadlock since the robot will not move
away from it. An example for a potential �eld is illustrated in Figure 2.1. Here we
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also see several possible paths leading towards the attractor (e.g. ball) around the
repellers.

The term potential �eld is used for the scalar �eld and for the gradient �eld inter-
mittently. A more detailed description of potential �elds and their applications in
robotics can be found in [9]. Potential �elds come with some problems. The attract-
ing and repelling forces can cancel each other out. In path planning it is assumed
that the robot can change velocity and direction instantaneously. To approach these
problems more elaborate planning techniques are used. By using only the potential
�eld for path planning in RoboCup games, the following two problems may occur:
modeling the goalposts and goal borders as repelling forces would �label� parts of
the inside of the goal as undesirable and using only one attractor at the opponent
goal gives almost equal potentials in and outside of the soccer �eld. Despite their
problems potential �elds are useful for realizing robot navigation. Potential �elds
are easily implemented and visualized and therefore the resulting robot behavior is
easy to predict. Since the attracting and repulsing �elds are independent of each
other, �elds can be updated, added or omitted in real time.

Figure 2.1: Image was adapted from [9]. Left: a vector �eld with one attractor
(green) and three repellers (red). Right: The corresponding scalar �eld

2.2 State Estimation with Bayes Filter

Bayes �lters are a general probabilistic approach for estimating an unknown proba-
bility density function. In general it calculates the next state estimate based on the
previous state, actions (e.g. movements) and observations.
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The notation of the equations for the Bayes �lter and particle �lter are in�uenced
by the book Probabilistic Robotics [24] and the diploma thesis by Markus Scheune-
mann. A sequence of observations is denoted as:

action

...

observation

...

ut−1 ut ut+1

xt−1 xt xt+1

zt−1 zt zt+1

Figure 2.2: Schematic of a Bayesian network. The modeled object is in state xt.
Executing action ut+1 changes the state. By accurately estimating the action the
observation zt+1 can be predicted.

z1, ..., zn = zt1, ..., ztn with tu ≤ tv und u ≤ v ∈ N (2.1)

a sequence of actions ut and a sequence of states xt are written in the same fashion.
It is assumed that the Markov property holds true. That means that the states xt−1

and xt + 1 are stochastically independent. The relation between ut, xt and zt is
visualized in Figure 2.2. The goal is to calculate the posterior probability of state xt
at time t after observations z1, ...zt and actions u1, ..., ut. This probability is called
Bel for belief.

Belx(t) = P (xt|z1, ..., zt, u1, ..., ut) (2.2)

The belief prior to observation zt is called B̂el and represents a state prediction. Cal-
culating Bel from B̂el is known as sensor update. The theorem of total probability
states:

P (x|y) =

∫
P (x|y, z)P (z, y)dz, with

∫
P (z)dz = 1 (2.3)

and the Bayes equation is given by:

P (x|y) =
P (y|x)P (x)

P (y)
, with P (y) > 0 (2.4)
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Combining Equation (2.3) and Equation (2.4) yields:

P (A|B,C) · P (B|C) = P (B|A,C) · P (A|C)⇔ P (A|B,C) =
P (B|A,C) · P (A|C)

P (B|C)
(2.5)

A,B and C are random variables. Substituting xt, zt and ut for A, B and C results
in:

P (
A︷︸︸︷
xt |

B,C︷ ︸︸ ︷
z1, ..., zt, u1, ..., ut) =

P (
B︷︸︸︷
zt |(

A︷︸︸︷
xt ,

C︷ ︸︸ ︷
z1, .., zt−1, u1, .., ut)P (

A︷︸︸︷
xt |

C︷ ︸︸ ︷
z1, .., zt−1, u1, .., ut)

P ( zt︸︷︷︸
B

| z1, .., zt−1, u1, .., ut︸ ︷︷ ︸
C

)

(2.6)

=
P (zt|xt, z1, .., zt−1, u1, .., ut)P (xt|z1, .., zt−1, u1, .., ut)

P (zt|z1, .., zt−1, u1, .., ut)
(2.7)

=
P (zt|xt)P (xt|z1, .., zt−1, u1, .., ut)

P (zt|z1, .., zt−1, u1, .., ut)
= Bel(xt) (2.8)

For better readability a normalizing constant is introduced: η = 1
P (zt|z1,..,zt−1,u1,..,ut)

Bel(xt) = η · P (zt|(xt)P (xt|z1, .., zt−1, u1, .., ut) (2.9)

This equation shows that the new state is a product from the previous state and
the sensor update. Using the theorem of total probability and the assumed Markov
property one can write:

B̂el(xt) = P (xt|z1, .., zt−1, u1, .., ut) (2.10)

=

∫
P (xt|xt−1, z1−1, .., zt, u1, .., ut)P (xt−1|z1, ..., zt−1, u1, ..., ut) dxt−1

(2.11)

=

∫
P (xt|xt−1, ut)P (xt−1|z1, ..., zt−1, u1, ..., ut) dxt−1 (2.12)

Bel(xt) = η · P (zt|xt)
∫
P (xt|xt−1, ut)P (xt−1|z1, ..., zt−1, u1, ..., ut)dxt−1 (2.13)

= η · P (zt|xt)
∫
P (xt|xt−1, ut) ·Bel(xt−1) (2.14)

The �nal part of this section introduces an approximation method, the Particle
Filter.
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Figure 2.3: The number of particles M for a particle �lter is a crucial design
parameter. The number needs to be high enough to represent the potential complex
distributions of a state well enough. At the same time the sensor update is calculated
for each sample, so time complexity has to be taken into account. In the left image
a Gaussian is estimated by the density of 50 particle and in the right the Gaussian
is estimated more accurately with 150 particles.

2.3 Particle Filter

Particle �lters are approximations of a Bayes �lter. They are often used to estimate
dynamic non-linear processes. In the �eld of robotics, particle �lters are used to solve
the localization problem. By using particle �lters the global localization problem
was �rst solved [23]. A particle �lter approximates the posterior probability Bel(xt)
at time t with the set of particles St

St := s
[1]
t , s

[2]
t , ..., s

[M ]
t

Each particle s
[m]
t represents a hypothesis about the state of the object (that is being

subject to the �ltering process). M is the number of particles. Since at each time step
all the particles are updated by sensor input, the number of particles is the signi�cant
factor for computing time. For autonomous robots with limited computing power,
like the NAO, it is important to choose M as low as possible but still high enough
to be able to approximate the state at all. Since the probability distribution is
usually unknown it is a challenge to choose M well enough. Assuming the state
follows a normal distribution Figure 2.3 shows how this state can be represented
with 50 particles (left) and 150 particles (right). The particle density equals the
value of a Gaussian. It's clear that 150 particles represent the gauss function more
accurately than 50 particles. The probability of a particle is proportional to the
posterior probability of the state.

s
[m]
t ∼ P (xt|z1, ..., zt, u1, ..., ut) = Bel(xt)
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This equation states that it's more likely that the �lter represents the true state when
the density of the particles is higher. The particle �lter creates the set of particles St
from the previous particle set St−1, an action and a sensor model. The algorithm 1

Algorithmus 1: Particle Filter with Importance Sampling

Input: St−1, ut, zt
Data: M ← |St−1|, S̄ ← ∅, St ← ∅
Output: St

1 foreach m ∈M do

2 Estimation s
[m]
t ∼ P (st|ut, s[m]

t−1)

3 w
[m]
t ← P (zt|s[m]

t )

4 S̄ ← S̄ + 〈s[m]
t , w

[m]
t 〉

5 end
6 foreach m ∈M do

7 with probability ∝ w
[m]
t draw s

[m]
t (tuple from S̄)

8 add s
[m]
t to St

9 end

shows a simple version of a particle �lter with Importance Sampling. First the action
model is applied. After that each particle of the set St−1 is weighted with w and is
then stored in set S̄. The weighting is done based on sensor measurements zt. In the
next step particles are taken from S̄ and stored in St. The chance that a particle is
selected is proportional to its weight. St represents the posterior probability Bel(xt)
of state xt.



Chapter 3

Simulation Based Action Selection

In the RoboCup environment, selecting the right action is often a challenging task.
The outcome of a particular action may depend on a wide variety of environmental
factors, such as the robot's position on the �eld or the location of obstacles. In
addition, the perception is often heterogeneous, uncertain, and incomplete.

Here simulation based decisions are used for the selection of actions. The intuition
behind simulation based decisions is to simulate what would happen as the result
of the execution of a particular action and then choose the action with the best
simulated outcome.

Although there are more aspects to action selection in RoboCup e.g. positioning,
the focus here is only on the selection of kicks. A core part of this chapter was
already presented in [17]. The work regarding kick selection was motivated by the
high number of kicks that resulted in the ball going o� �eld using a non probabilistic
method.

This non probabilistic method used a potential �eld which determined the direction
of a kick. For positions close to the opponent goal the potential �eld was no longer
used, but a set of rules mapped the robots position to a sequence of actions e.g.:
turn towards the goal and then kick forward. The kick distance and any uncertainty
was not considered. In contrast to the simulation based method only the gradients
of the potential �eld were used.

The task of the simulation process is to predict the state of the world after the
execution of a given kick. Instead of simulating the kick motion, the e�ect of kick
motion on the ball is simulated. To be able to select the best kick, the robot needs
an estimation of the world state and an action model. In case of the kick selection
problem, the state consists of the robot's position on the �eld, the position of the ball

10
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World Model

Action Model

Rules

Strategy Model

Strategy Preferences

Estimator

Simulator

Evaluator

Selector

Perception

World State

Projected Partial World State

Evaluated Actions

Best Action

Figure 3.1: Visualization of the simulation based decision algorithm. The left boxes
are assumptions that are used at di�erent stages in the algorithm, represented by the
boxes in the middle. On the right the calculated intermediate results and input and
output are shown.

relative to the robot, positions of the teammates and opponents. These particular
aspects are usually estimated using various �ltering techniques. In our case di�erent
independent probabilistic �lters are involved, in particular, a particle �lter for self-
localization and a multi-hypotheses extended Kalman �lter for the ball position [18].
The action model comprises the set of possible actions and models which describe
the interaction with the environment. For example a collision model. To simulate
the outcome of a kick, the interactions between the executing robot and the ball,
the dynamics of the ball motion and its possible interactions with the environment
need to be modeled.

The structure of the simulation based decision method is visualized in Figure 3.1.
The Simulator uses the estimated world state to envision multiple future world states
for each action. The Evaluator evaluates the future world states based on a set of
rules and a strategy model. In the case of the kick selection a rule is: the ball should
stay inside the �eld and a strategy would be: the ball should go inside the opponent
goal. The Selector de�nes the best action according to the evaluated actions and
strategy preferences. Preferences are for example: If at least one projection of an
action scores a goal select this action.

In the following section, these models will be discussed in detail. The Section 3.1
explains how a single projected world state is calculated. In Section 3.2 the eval-
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uation approach based on potential �elds used in [17] is presented as well as some
improvements and in Section 3.3 the decision algorithm is explained.

Figure 3.2: The objective is to get the ball away from the own goal and towards the
opponent goal. This objective is encoded in the potential �eld. From this perspective,
the decision should be a sidekick to the right. But due to the uncertainty in the
actions' execution, the ball might go outside the �eld. To deal with this uncertainty,
samples are simulated

3.1 Physical Simulation

In general, an exhaustive physical simulation is a complicated and resource con-
suming process. One has to carefully consider the aspects that are relevant for the
simulation. To reduce complexity, several simplifying assumptions were taken. The
focus is only on simulating aspects involved in the action, i.e., the ball motion and
its potential collision with obstacles and goals. That means, it is assumed that all
objects excluding the ball remain static. Though this is obviously not true, the
velocity of the ball is usually much higher than that of the robots, which makes it
a viable assumption in this case. To model collisions with obstacles, especially goal
borders, a perfectly inelastic collision is assumed, where the ball's trajectory ends
at the point of contact. With these assumptions, the dynamic model of the ball and
the model for the e�ect of the kick on the ball are de�ned, which is discussed in
the following two subsections. The simulation mentioned in this section refers to
the deterministic simulation of one sample. In Figure 3.2 the simulation of multiple
samples per action is visualized.
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3.1.1 Ball Dynamics

To describe the dynamics of the ball motion, a simple rolling resistance model is
used which leads to the following motion equation:

d(t) = −1

2
· g · cR · t2 + v0 · t (3.1)

Where d(t) is the distance the ball has rolled after the time t > 0, cR is the rolling
resistance coe�cient, and v0 is the initial velocity of the ball after the kick. By
solving d′(t) = 0 and putting the result in eq. (3.1) the maximal rolling distance,
i.e., the stopping distance of the ball, can readily be determined as

dmax =
v2

0

2cR · g
. (3.2)

The parameters v0 and cR of this model have to be determined experimentally. It
should be noted that v0 depends mainly on the particular kick motion and cR relies
primarily on the particular carpet of the �eld since the ball remains the same. Thus,
v0 has to be estimated once for each kick motion and cR once for each carpet and
ball pair.

Derivation of rolling resistance model

The basic friction model is:
Fr = cR ·N (3.3)

cR is the roll friction coe�cient. In this case the normal force N is earth's gravita-
tional pull, so N = g ·m with m being the mass of the ball. Newton's second law of
motion says that force is equal to mass times acceleration: Fr = ar ·m. This yields:

cr ·N = cR · g ·m = ar ·m⇔ cr · g = ar (3.4)

ar is constant. After the kick ar is the only acceleration that acts upon the ball. So
the acceleration of the ball for time t ≥ 0 can be written as

a(t) = −cR · g (3.5)

The acceleration is negative because it acts in the opposite direction of the ball
movement. This results in the following di�erential equation for the velocity of the
ball.

v′(t) = a(t) = −cR · g (3.6)

And solve it:
v(t) = v0 − t · cR · g (3.7)
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with initial velocity greater or equal zero. In order to calculate the distance the ball
rolls v(t) is interpreted as a derivative.

d′(t) = v(t) = v0 − t · cR · g (3.8)

The general solution for d is:

d(t) = d0 + t · v0 −
1

2
· t2 · cR · g (3.9)

The start distance d0 is assumed to be zero since for this work only the distance the
ball rolled after the kick is of any relevance.

d(t) = t · v0 −
1

2
· t2 · cR · g (3.10)

This equation is equal to Equation (3.1). It is important to note that this model
only makes sense as long v(t) ≥ 0. The stopping time point T can be calculated by:

v(T ) = v0 − T · cR · g = 0⇔ T =
v0

(cR · g)
(3.11)

and therefore the distance the ball rolls is calculated as follows:

dmax = d(T ) = T · v0 −
1

2
· T 2 · cR · g (3.12)

=
v0

cR · g
· v0 −

1

2
· ( v0

cR · g
)2 · cR · g (3.13)

=
v2

0

cR · g
− 1

2
· v2

0

cR · g
(3.14)

=
1

2
· v2

0

cR · g
(3.15)

3.1.2 Kick-Action Model

The result of a kick can be described by the likelihood of the �nal ball location
after its execution, i.e., positions in which the ball is expected to come to a halt
eventually. These positions can be estimated based on the dynamic model of the
ball as described in Section 3.1.1 and the intended direction of the kick. It is assumed
that the direction of the ball motion α and the initial velocity v0 of the kick behaving
according to a Gaussian distribution. With this, the outcome of a kick action can be
described as a tuple of initial velocity v0, direction α, and corresponding standard
deviations σv and σα:

a = (v0, α, σv, σα) ∈ R+ × [−π, π)×R+ × [−π, π) (3.16)
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Figure 3.3: Kick action model: distributions of the possible ball positions after a
sidekick and the long kick forward with the right foot assuming a robot rotation of
0°. Blue dots illustrate experimental data.

The outcome of an action is predicted by sampling from the Gaussian distributions:

predict(a) := (dmax(εv), εα) ∈ R+ × [−π, π) (3.17)

where εv ∼ N(v, σv) and εα ∼ N(α, σα). Note that the function predict(·) is non-
deterministic. Figure 3.3 illustrates the resulting likelihood for the �nal ball posi-
tions for a kick forward and a sidekick left. The four parameters for each kick are
determined as described in Section A.1

3.1.3 Obstacle Models

In [17] a simplistic obstacle model was implemented which shortened the trajectories
of all samples from the kick short action if the sonar sensor detected an obstacle in
front of itself. Since the sonar measurements are too imprecise and only applicable
for the forward kicks, a visual approach is used. Sometimes during games, the sonar
sensors detected the ground in front of the robot as an obstacle which then resulted
in the wrong action. Another shortcoming of sonars is the range. A visual approach
can easily deal with this.

As described in [18] a scan line algorithm is used for detecting the endpoints of
the green �eld in the image. Those endpoints are projected on the �eld, and a
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Figure 3.4: The sample which are in�uenced by the opponent robots are marked
green. The other samples pass between the robots. In this case the forward kick
would be chosen.

rough border is calculated by interpolating between the projected points. If the line
between the current ball position and a sample intersects the border, the sample
is reset to the intersection point minus the ball radius. In Figure 3.4 illustrates an
example of this method is clearly visible. Despite the two opponent robots in front
of the ball, our robot would still shoot the ball forward since it's likely for the ball to
go between the two robots and closer to the goal in the background. The trajectories
of all samples are also shortened by collision with goal borders.

3.2 Evaluation

This step evaluates the multiple realizations of an action, called samples. This is
referred to as simulating an action. A hypothesis Ha for the action a ∈ A is de�ned
as a set of n ∈ N samples drawn from the model distribution of an action a as
described in Section 3.1.2.

Ha := {pi|pi = predict(a), i = 1 . . . n} ⊂ R+ × [−π, π) (3.18)
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The samples of each hypothesis are individually evaluated by two di�erent systems.
First, each sample h ∈ Ha is assigned a label

label(h) ∈ L := {INFIELD,OUT,GOALOPP,GOALOWN} (3.19)

based on where on the �eld it is, e.g., inside the �eld, inside the own goal, outside
the �eld, etc. These labels re�ect the corresponding discrete rules of the game. Each
sample can only have one label. In the second step, all samples labeled INFIELD
are evaluated by a scalar potential �eld encoding the team strategy. The potential
�eld used in the simulation based action selection algorithm is described closer in
Section 3.2.1.

3.2.1 Potential Field

A potential �eld as described in Section 2.1 assigns a value to each position of the
ball inside the �eld. The values re�ect the static strategy of the game and are used
to compare possible ball positions in terms of their strategic value. For instance, a
position in front of the opponent goal is intuitively better than one in front of the
own goal. From 2015 on the Nao Team Humboldt used the following potential �eld
during competitions:

P (x) = xT · νopp︸ ︷︷ ︸
linear slope

− N(x|µopp,Σopp)︸ ︷︷ ︸
opponent goal attractor

+N(x|µown,Σown)︸ ︷︷ ︸
own goal repeller

. (3.20)

It consists of three di�erent parts: the linear slope points from the own goal to-
wards the opponent goal and is modeling the general direction of attack. The two
exponential �elds N(x|µown,Σown) and N(x|µopp,Σopp) create a repulsor around the
own and an attractor around the opponent goal respectively. The basic function is
de�ned as

N(x|µ,Σ) = exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
. (3.21)

The con�guration currently used for SPL Games is

νopp = (−1/xopp, 0)T (3.22)

with xopp = 4.5 being the x-position of the opponent goal and

µopp = (4.5, 0), Σown =

(
3.3752 0

0 1.22

)
, (3.23)

µopp = (−4.5, 0), Σopp =

(
2.252 0

0 1.22

)
(3.24)

for the repeller and attractor respectively. All parameters are of unit m. The
potential �eld described in equations 3.20 to 3.24 is visualized in �gure 3.5. The
lines indicate points with the same potential value.
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Figure 3.5: Strategic potential �eld evaluating ball positions. Own goal is on the
left (blue).

3.2.2 Grounding the Potential Field

The potential �eld used in [17] was based on a heuristic such that positions close to
the own goal get high values and close positions to the opponent goal get low values.
Thus the robot would move the ball from its own goal more towards the sidelines,
while being in the opponent half, it would bring the ball back into the middle of the
�eld. This strategy is known in football as wing play. The potential �eld function is
mentioned in Section 3.2.1. The potential �eld has been observed to perform poorly
in certain game situations. For example next to an opponent goal post. I propose
to substitute this �eld with one learned using reinforcement learning methods.

Although the handcrafted version of the potential �eld implemented the desired
strategy, it lacked grounding. Evaluating a position on the empty �eld according to
the time that it takes to score a goal from that position results in a similar potential
�eld. The time has to be calculated for all possible robot rotations for a given
position. The minimum of those times is the potential and the robot-rotation that
lead to the minimum time de�nes the corresponding vector. This is visualized in
the left image in Figure 3.6. Mirroring the potential �eld and subtracting it from
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the original yields the image on the right. Thus the grounded potential �eld can be
expressed as:

P(x,y) = Tgoal(x, y)− Tgoal(−x, y) (3.25)

where Tgoal(x, y) refers to the time the robot takes to score a goal from position x,y.

The grounded potential �eld was calculated in an abstract 2D Simulator developed
for this purpose. For calculating the times we assumed the robot walks forward
with a velocity of 200mm per second and a rotation velocity of 60°per second. It
is further assumed that the robot always rotates towards the ball and then walks
a straight line towards it and immediately performs the best action, which doesn't
take any time unless it's another rotation. The future ball position is assumed to
be the mean of the distribution of the best kick. The time to score a goal is now

Figure 3.6: Left: Visualization of best direction as de�ned as the shortest time to
goal. Right: Grounded potential �eld as de�ned by equation 3.25

the potential at the starting point. This has the bene�t that dynamic aspects of the
game, e.g., team members or opponent players can be more naturally represented in
the potential �eld by modeling their e�ects on the time to score a goal. An example
is described in Section 3.2.3.

3.2.3 Region of In�uence

In Section 3.2.2 the concept of a potential �eld was grounded by treating the time
it takes from one position to score a goal as the potential of this position. Now
dynamic aspects can be encoded in the potential �eld by modeling the e�ects on
the time to score a goal. The dynamic objects in a robot soccer game are mainly
the robots themselves. The human referees are not considered here. Each robot
is modeled with an in�uence region which represents the space in which it has an
in�uence on the ball's total time to the goal. The in�uence region is modeled as
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the set of positions that can be reached in less than max_reach seconds. In local
coordinates x,y this can be represented as

time =
arctan(y, x)

rot_vel
+

√
x2 + y2

walk_vel
(3.26)

The in�uence potential inflp can be calculated as follows:

inflp =

{
time−max_reach time < max_reach
0 time ≥ max_reach

(3.27)

To get the �nal potential �eld for each team member the corresponding in�uence

Figure 3.7: The left image shows the in�uence region of a robot in local coordinates.
The right image shows the applied in�uence region of a robot standing in the middle
of the �eld.

region is added to the existing �eld. The resulting potential �eld is depicted in
Figure 3.7

3.3 Decision

The overall decision has to take into account the strategy preferences, meaning the
trade-o� between possible risks, e.g., ball leaving the �eld, and possible gains, e.g.,
scoring a goal, weighted by the chances of their occurrence. The estimation of
those risks and gains can be done based on the individual ratings of the particular
simulation results, i.e., samples. The likelihood of the occurrence of an event marked
by a label λ ∈ L within a hypothesis Ha can be estimated as

p(λ|a) :=
|{h ∈ Ha|label(h) = λ}|

|Ha|
. (3.28)
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Figure 3.8: Three examples for kick simulations. Each possible kick direction is
simulated with 30 samples (di�erent colors correspond to di�erent kicks). Left: the
short and long kicks are shortened due to collision with an obstacle. Middle: long
kick is selected as the best action since it has the most samples result in a goal.
Right: the best action is sidekick to the right � the other kicks are more likely to end
up in a dangerous position for the own goal according to the potential �eld.

For instance, the likelihood for scoring a goal with the action a can be written as
p(GOALOPP|a). A two step decision process is used, whereby the actions that are
too risky are discarded in the �rst step, and the one with the highest gain is selected
in the second. More precisely, an action is called too risky if there is a high chance
for kicking the ball out of the �eld or scoring own goal. The set of actions with
acceptable risk can be de�ned as:

Aacc := {a ∈ A|p(INFIELD ∪ GOALOPP|a) ≥ T0 ∧ p(GOALOWN|a) ≤ T1} (3.29)

with �xed thresholds T0 and T1 (in our experiments T0 = 0.85 and T1 = 0 were
used). From this set the actions with the highest likelihood of scoring a goal are
selected

Agoal := argmax {p(GOALOPP|a)|a ∈ Aacc} . (3.30)

In case that Aacc is empty the default action is always to turn around the ball.
In case Agoal contains more than one possible action, the best action is selected
randomly from the set of actions with the maximal strategic value based on the
potential �eld

a0 ∈ argmax{value(a)|a ∈ Agoal} (3.31)
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with strategic values de�ned as

value(a) :=

∫
Ω

p(x|a) · V (x) dx =
1

n

n∑
i=0

V (xi) (3.32)

where V is the strategic value of a position given by the potential �eld. In case
that Agoal is empty the action with the maximum strategic value is selected from
the set of acceptable actions. The evaluation process is described by algorithm 2.
Figure 3.8 illustrates several situations with the corresponding simulated hypotheses
and their evaluations.

3.3.1 Turn Strategy

In [17] 4 di�erent kicks were evaluated and the best one executed, except when
the current position of the ball got a better potential value than the estimated
future position of all other kicks. In this case the robot would choose to turn
around the ball. This was motivated by the need to keep the ball moving and
therefore making it harder for the opponent to have enough time to prepare for a
long kick. However, in some situations it would be bene�cial to turn around the
ball to some degree and then execute a kick. With the simulation based decision
algorithm described previously such a decision could not be made. A naive solution
to this shortcoming would be to simulate all actions for every rotation. Due to
resource constraints this is not possible. However executing the simulations for a
small number of rotations is possible. To iteratively compute the best direction
a particle �lter as described in Section 2.3 is used. Each kick action is evaluated
for n robot rotations. These rotations are the particles for the particle �lter. The
evaluation of the kicks for each particle is done as described in Section 3.2. The
particles' likelihood is determined by the positions of the individual samples of a
kick simulation, e.g. INFIELD and OPPGOAL. The resampling is done as shown
in algorithm 1. The process is repeated 10 times. The mean of the samples after
10 resamplings, here meaning robot rotations, is then used as the value the robot
needs to turn in order to achieve the best result. The action that needs the least
rotation is executed after the appropriate rotation. This approach is in a sense the
opposite to the previous one. Here the robot always turns the best way it can and
then shoots. In order to improve on the time the robot spends on turning around
the ball a lower threshold for the turn angle can be implemented. Also it might
make sense to set a maximum time allowed to turn around the ball. A comparison
between the original strategy and the turn strategy is presented in Section 4.2.
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Algorithmus 2: Decision

Input: action set
Data: Aacc ← {}, Agoal ← {}
Output: best action

1 foreach a ∈ action set do
2 if p(GOALOWN|a) ≤ T1 then
3 Aacc ← Aacc ∪ a
4 end
5 if p(INFIELD ∪ GOALOPP|a) ≥ T0 then
6 Aacc ← Aacc ∪ a
7 if p(GOALOPP|a) ≥ 1 then
8 Agoal ← Agoal ∪ a
9 end

10 end

11 end
12 if |Aacc| = 0 then
13 return turn action
14 end
15 if |Aacc| = 1 then
16 return Aacc{0}
17 end
18 if |Agoal| = 0 then
19 return argmax(value(a)|a ∈ Aacc)
20 end
21 if |Agoal| = 1 then
22 return Agoal{0}
23 end
24 return argmax(value(a)|a ∈ Agoal)



Chapter 4

Experimental Evaluation

For this thesis a simple 2D Simulator was developed for evaluating how the action
selection algorithm performs with di�erent initial conditions. For experiments that
require the simulation of consecutive actions the mean of the samples is assumed as
the future robot position. The process is shown in Figure 4.1.

Figure 4.1: Robot is represented as white circle, the arrow indicates the robots
rotation on the �eld. The red circles represent particles and the blue circle is the
mean of the particles of the best action

4.1 Estimating the Number of Simulations

A central aspect of the simulation based decision approach is the evaluation of
samples and not the full underlying probability density functions. To make this
algorithm usable on the NAO robot platform only a small number of samples can be

24
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used. To test if using more samples results in a signi�cant qualitative improvement,
multiple experiments were conducted using an abstract 2D simulator. For every
position (x, y, rotation) on the �eld the decision was calculated 100 times. From the
resulting histogram for every position the highest column represents the most likely
decision. The number of positions where the highest column has less than 50 % of
the 100 decisions is shown in Figure 4.2. The �eld resolution in x and y was 200mm
and a rotation step of 20° which resulted in 22032 evaluated states. Using 100 or
more samples to estimate a kick would result in a signi�cant better result, which
has less uncertainty. Unfortunately this is not feasible on the robot platform. In
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Figure 4.2: Plot of the variation in decision depending on the number of simula-
tions used to make a decision.

[17] 30 samples were used. This analysis shows that using 30 samples to estimate
the result of a kick is appropriate as increasing the number of samples has only a
small e�ect on the uncertainty. Even by using more samples it can still happen that
at a particular position the decision changes from one simulation to the next. It is
just less likely to happen. To improve the quality of decision making a histogram of
decisions like the one used in this analysis could be introduced. This would prevent
executing spurious decisions. However the histogram must be recalculated as soon
as the robot moves or when opponent players are part of the simulation whenever
they move as well.
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4.2 Strategy Comparison

In [17] the kick selection would always prefer to execute a kick and only turn around
the ball when no acceptable kick could be performed. This strategy is shown in algo-
rithm 2. In Section 3.3.1 another strategy, which prefers to turn �rst, is introduced.
In this section a comparison between the two approaches are presented. To estimate
how well a strategy works, I estimated how fast the strategy can score a goal on an
empty �eld. This experiment was conducted in an abstract 2D Simulator which is
described in Section 3.2.2. Figure 4.3 shows how the time that the robot needs from

Figure 4.3: The start positions are indicated by the colored patches. Each image
corresponds to a speci�c rotation at the start position. Left: 0°, Middle: r-90°, Right:
180°. Green Patches indicate that the particle �lter approach was at least 5 seconds
faster, red patches indicate that the simulation based algorithm was 5 seconds faster
or more. Blue patches indicate that the time di�erence was less then 5 seconds.

a certain position to score a goal compares between the strategies. Positions marked
green represent positions from which the turn strategy was signi�cantly faster (10
seconds or more). For blue positions there are no signi�cant di�erences. At posi-
tions marked red the normal simulation based algorithm as described in Chapter 3
was faster. Each simulation was repeated 100 times. In Figure 4.4 the disadvantage
of the turn strategy is visible. In this strategy the robot will turn a little even if the
current rotation is near perfect. Since the rotation speed of the robot is comparable
slow, this in�uences the total time in a signi�cant way. The turn strategy approach
is seems better when the robot is not already turned towards the goal. The same
analysis is done for the number of kicks until a goal was scored. Overall the turn
strategy seems to be an improvement.
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Figure 4.4: The start positions are indicated by the colored patches. Each image
corresponds to a speci�c rotation at the start position. Left: 0°, Middle: r-90°, Right:
180°. Green Patches indicate that the particle �lter approach took less kicks motions,
red patches indicate that the simulation based algorithm took less kick motions. Blue
patches both approaches took the same amount of kicks to score a goal.

4.3 Quantitative Analysis in Real Game Situations

As mentioned in Chapter 3 the original motivation behind the simulation based
decision approach was to decrease the times the robot shoots outside the �eld. In
[17] games with the old approach were compared against games with the simulation
bases method. For this purpose videos overlooking the whole �eld of the games were
recorded during RoboCup competitions in 2015 alongside with log �les recorded by
each of the robots. Video recordings provide a ground truth of the situation while
log data recorded by the robots provides the corresponding internal state. The
log �les contain perceptions and the behavior decision tree for every cognition cycle
(33 ms). This allows the extraction of situations in which the robot took the decision
to kick. The logs have been synchronized with the corresponding video �les and the
extracted kick actions were labeled manually. The labeling procedure has been
performed with the help of the interface, which had been designed speci�cally for
this purpose. Figure 4.5 illustrates an example of a labeling session for the �rst
half of the game with the team NaoDevils at the RoboCup 2015. The labeling
criteria consist of 15 distinct boolean labels in three categories: technical execution
of the kick, e.g., robot did miss the ball; situation model (was the estimation of
robots position on the �eld and the ball correct?); result of the action and strategic
improvement of the situation (ball left the �eld, was moved closer to the opponent
goal etc.).
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Figure 4.5: Illustration of the labeling interface used to collect data regarding the
quality of the kicks. At the bottom are time lines for each of the robots. Di�erent
actions are represented by buttons on the time line with di�erent colors. On the right
the robots estimated state is visualized, i.e., estimation of its position, ball model and
obstacles. On the left are three categories of labels capturing the quality of the action.

4.3.1 Data Set

For the analysis games that the Nao Team Humboldt has played in two di�erent com-
petitions in 2015 � the German Open 2015 (GO15) and RoboCup 2015 (RC15) were
considered. In both competitions the NaoTH robots performed well and reached the
third place at the German Open and quarter �nals at the RoboCup. At the GO15
the previous solution mentioned in Chapter 3 were used while at the RC15 the
presented simulation based approach had been employed. From GO15 a total of
�ve game halves have been analyzed with: ZKnipsers (two halves, preliminaries);
HULKS (�rst half, preliminaries); and Nao Devils (two halves, game for the 3rd
place). And from RC15 three complete games were analyzed with: RoboCanes (two
halves, preliminaries); Nao Devils (two halves, intermediate round); and HTWK
(two halves, quarter �nals). The selection of the analyzed games depended largely
on the availability of the videos and log data. The names ZKnipsers, HULKS, Nao
Devils, RoboCanes and HTWK refer to SPL teams.
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Algorithm New Old

Total number of kicks 163 196
Robot was localized 150 (92.02 %) 165 (84.18 %)
Successful execution 93 (57.06 %) 153 (78.06 %)
Failed execution 70 43

Failed: opponent interference 33 (47.14 %) 14 (32.56 %)
Failed: technical failure 37 (52.86 %) 29 (67.44 %)

Successful execution + Localized 86 (52.76 %) 131 (66.84 %)

+1 67 (77.91 %) 88 (67.18 %)
0 15 (17.44 %) 39 (29.77 %)
-1 4 (4.65 %) 4 (3.05 %)

Out at opponent goal line 1 (1.16 %) 8 (6.11 %)

Table 4.1: Analysis results of video material. The new algorithm shows a higher
rate of strategic improvements (+1) and a lower rate of mediocre kicks (0). It is
also about 5 times less likely to kick out at the opponent �eld line.

4.3.2 Results

To single out the e�ect of the kick selection only kicks in which the robot was well
localized (so it knew what it was doing) and the kicks that were executed successfully,
i.e., the ball went in the intended direction and did not collide with opponent, are
considered. In short: successful kicks are the ones which comply with our action
model as described in section 3.1.2. The top part of the table 4.1 illustrates the
numbers of the successful and failed kicks. Our analysis has also revealed that
a high percentage of the actions fail due to various reasons. The main reasons
appear to be failure in the technical execution, e.g., the robot trips and doesn't
kick the ball properly and interference by opponent players. Both aspects are not
part of the simulation and require further investigation. The table 4.1 (Failed
execution) summarizes the rates of the failed kicks split in these two cases. The
higher opponent interference in the case of the new approach can be explained by
the more challenging opponent teams at the RoboCup 2015. In the lower part of the
table 4.1 the evaluation of the kick results according to the strategic improvement
of the ball position as described above are summarized. The separation used here is
very rough: +1 corresponds to the cases in which the strategic position of the ball
was clearly improved by the action, e.g., it was moved closer towards the opponent
goal; -1 was given when the ball moved towards own goal or away from the opponent
goal; and 0 when no improvement was visible, e.g., ball moved along the middle line.
The results show that the new approach results in a higher rate of improvements
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(+1) and a lower rate of mediocre kicks (0), while the rate of cases in which the
position of the ball worsened (-1) remained at a comparable level. Another important
factor is the number of times the ball leaves the �eld, because it results in a tactical
disadvantage as the ball position is reset to the disadvantage of the team which shoot
the ball out. The penalty is especially severe when the ball leaves on the opponent
goal line, since the ball is then reset to the middle line. In this case a signi�cant
improvement with the new approach can be seen, as only one kick (1.16 %) left
the �eld at the opponent goal line in contrast to more than 6 % (8 kicks) with the
old solution. In summary, the data shows that the new approach performs more
robustly than our previous solution. The new algorithm is about 5 times less likely
to kick out at the opponent �eld line (decrease by 81 %) and 16 % more likely to
kick towards the opponent goal.



Chapter 5

Discussion and Future Work

A method for fast decision making was presented. While the simulation based idea
was introduced and evaluated in the speci�c domain of the kick selection problem
in RoboCup, I believe this approach can be used in other domains as well. The core
idea of the simulation based decision making method is to approximate a complex
state with a number of simple deterministic simulations. The models used for those
simulations depend on the task. Here I argue that simple models are su�cient
enough to compare outcomes of possible ball kicks. It is important to note that
estimating the exact future ball position is not needed in order to compare the
kicks. Experimental data collected in real RoboCup games has shown that the
algorithm performs very well and is an improvement over the algorithm used by the
Nao Team Humboldt before.

A signi�cant advantage of the simulation based decision making approach is the
modularity. Every part can be improved and changed without breaking the overall
behavior. The simulation can be easily changed to incorporate models for team
members and opponents. Those models might be complex but their integration in
the proposed decision making process is not since only the in�uence on one sample
needs to be explicitly modeled. Following I want to highlight some possible future
improvements.

5.1 Positioning Behavior

So far the presented approach only captures decisions that the robot next to the
ball needs to take. This leaves the question of how to deal with situation in which
the robot is not in possession of the ball. Supporting robots can simulate the action
of the robot that is currently closest to the ball (striker) by executing the decision
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making algorithm as the striker would do. That means using the position of the
striker instead of their own. This gives the supporting players the information
where the ball will be and when. The passive player can then go to this place
in anticipation of a pass. Note, that the striker does not need to know that it is
about to pass the ball to another player. The situation is more di�cult, when the
opponent player has the ball. One can't simulate their kicks since the behavior
is unknown. But assumptions can be made about the opponents decision making.
The easiest way is to assume that they behave exactly as our robots do, but play
towards our goal, maximizing the potential value instead of minimizing it. In that
case, given the opponents positions and the ball position is known, the defending
robot can calculate the future ball position and its probability distribution. Usually,
the behavior of the opponent di�ers a lot from our robots' behavior, so a model of
the opponent kick behavior has to be learned. It might be possible to learn this
from videos of previous games since overall team behavior tends to change slowly
from year to year. Kick events from opponents can be labeled similar to what is
explained in Section 4.3. In [14] an approach for learning a model of a human soccer
teams is presented.

5.2 Simulating Foot Steps

Currently the parameters for a kick are experimentally determined. A kick is a spe-
cial foot trajectory. That means that changes e�ecting the trajectory (stabilization,
walking engine) also e�ect the kick. Those changes are not part of the simulation
process. It is possible to simulate whether a step, special or not, e�ects the ball by
simulating the contact point between ball and foot and then use a simple physics
simulation again to calculate the resulting endpoints of the ball trajectory.



Appendix A

Parameter Estimation

A.1 Estimation of Kick Action Parameters

The four kick parameters, initial velocity of the ball, kick direction and their corre-
sponding standard deviations were estimated experimentally. To estimate the rolling
resistance coe�cient for a particular surface and ball, multiple experiments with an
inclined plane were performed. The ball started to roll down from di�erent heights
and the distance the ball rolled on the surface was measured. From the height and
length of the plane the velocity of the ball at the time when it hits the ground υp
can be estimated with:

υp =
g · h
l
· tp (A.1)

where tp is the time the ball needs to roll down the plane. We then measured the
distance in multiple experiments. By transposing the rolling distance formula, the
rolling resistance coe�cient can be calculated.

cR =
1

2
·
υ2
p

g · d
(A.2)

where υp is the starting velocity, g the gravitational constant, and d the total distance
the ball traveled on the surface. The mean of the calculated coe�cients is used as
the rolling resistance coe�cient for the next calculations. To calculate the initial
velocity of a kick, the distance the ball rolled after a particular kick was measured
in an experiment. By using the stopping distance formula, the initial velocity of one
kick can be calculated by

υ0 =
√
d · 2cR · g (A.3)

where υ is the initial velocity of the ball. cR the rolling resistance coe�cient and
g the gravitational constant. The mean of υ0 of multiple repetitions approximates
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the initial velocity of this action. The standard deviation of the repetitions is used
as the standard deviation of the velocity of the kick.



Appendix B

RoboCup Initiative

B.1 RoboCup

Since 1997 the RoboCup World championship is held yearly with the goal foster
the development of a robot soccer team which can beat the FIFA World Champion
by 2050. Since then di�erent leagues have been established with di�erent goals
like RoboCup Rescue, @Home and Junior. In RoboCup Soccer there are di�erent
leagues, each with it's own unique research focus. There are the Humanoid, Small
Size, Middle Size, 2D, 3D Simulation and the Standard Platform League. The SPL
stands out as the only league where all robots are the same model. So the robots
di�er only by the programmed behavior. Since 2008 the NAO robots by Aldebaran
are used as the Standard Platform. In the humanoid leagues the robots hardware
is developed by individual teams themselves. They are divided in three sub leagues
corresponding to the height of the robots. The Middle size and small size league are
non humanoid.

B.2 NAO Robot

The NAO robot is produced by the french company Aldebaran. They produced 5
di�erent versions so far. In the following table an excerpt of the speci�cations for
the v5 model is listed. The speci�cations are taken from the o�cial documentation
provided by Aldebaran. Older models are allowed to be used in the SPL.
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Table B.1: Overview of Nao v5

Operating System
Name NAOqi (Embeded

Linux)
Version 2.1.4.13

CPU
Model Intel Atom Z530
Architecture Silverthorne, x86
Clock Speed 1.6 GHz, 533 MHz FSB
Cores 1
Cache 512 kB

Memory
RAM 1 GB
External 2 GB (Flash), 8 GB (SDHC)

Measurements
Dimensions 573mm Ö 311mm Ö

275mm (Hight Ö Depth
Ö Width)

Weight 5.4 kg
Degrees of Freedom 25

Sensors
Cameras 2 á 1280 Pixel Ö 960 Pixel, 30 FPS

60,9° horizontal opening angle
47,6° vertical opening angle

Microphones 4 a 20 mV/Pa ± 3dB sensitivity
Frequency range: 150Hz bis 12kHz

Ultrasound 2 Ö 2 (1cm � 4cm resolution, frequency: 40kHz, 60°
opening angle)

Inertia Sensors 3-axis Gyro and 3-axis acceleration sensor
Proprioceptive sensors perception of joint positions with Hall sensors (ca. 0,1°

resolution)
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