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Chapter 1

Introduction

This document gives an overview over the current state of the software base
developed by the Berlin United - Nao Team Humboldt to control a humanoid
robot in the context of the robot soccer competition RoboCup. The release
of the code base accompanying this report and the corresponding technical
documentation can be found under the following links:

Docu: https://github.com/BerlinUnited/NaoTHDoc/wiki

Code: https://github.com/BerlinUnited/NaoTH

1.1 Our Team

Our team is part of the multi-league joint research group Berlin United bet-
ween the RoboCup research group of the Humboldt-Universität zu Berlin
and the Freie Universität Berlin (FUmanoids, KidSize League). The research
group NaoTH was founded at the end of 2007 and consists of students and
researchers at the Humboldt-Universität zu Berlin. The team is part of the
research lab for Adaptive Systems at Humboldt-Universität which is headed
by Prof. Verena Hafner. The team was established at and evolved from
the AI research lab headed by Prof. Hans-Dieter Burkhard, and is led by
Heinrich Mellmann and Marcus Scheunemann. At the current state the core
team consists of two PhD, four Master/Diploma, and six Bachelor students.
Additionally, we provide courses and seminars where the students solve tasks
related to RoboCup and other problems of Cognitive Robotics and AI.

We have a long tradition within the RoboCup by working for the Four
Legged League as a part of the GermanTeam in recent years, with which we
won the competition three times. We started working with Naos in May 2008
and achieved the 4th place at the competition in Suzhou in the same year.
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In 2010, we simultaneously participated in the SPL and the 3D Simulation
League for the first time with the same code. In the 3D Simulation, we won
the German Open and the AutCup competitions and achieved the 2nd place
at the RoboCup World Championship 2010 in Singapore. In 2011, we won
the Iran Open competition in SPL and started a conjoint team Berlin United
with the FUmanoids from Berlin who participated in the KidSize League.
In the world cup 2012 in Mexico, we won the technical challenge with an
extension for the SimSpark Simulator, used in the 3D Simulation League,
to get closer to achieve our long-term goal to narrow the gap between the
simulation and real robots league.

With our efforts in these three leagues, we hope to foster the cooperation
between them and enhance results in all of those leagues with perspective
change. In cooperation with FUmanoids, we applied for a RoboCup project
to investigate a common communication protocol to hold matches with differ-
ent robot platforms and software in one team. Another RoboCup project of
ours dealt with the topic of an extension for SimSpark for SPL. We informed
about results of this extension during the symposium 2013 in Eindhoven.

1.2 Summary

Our general research fields include agent-oriented techniques and Machine
Learning with applications in Cognitive Robotics. Currently, we mainly focus
on the following topics:

� Software architecture for autonomous agents (section 2)

� Narrowing the gap between simulated and real robots (section 3.5)

� Dynamic motion generation (section 6)

� World modeling (section 5)



Chapter 2

Architecture

An appropriate architecture is the base of each successful software project. It
enables a group of developers to work at the same project and to organize the
solutions for their particular research questions. From this point of view, the
artificial intelligence and/or robotics related research projects are usually
more complicated than commercial product development, since the actual
result of the project is often not clear. Since we use this project also in
education, a clear organization of the software is necessary to achieve a fast
familiarization with the software. Our software architecture is organized
with the main focus on modularity, easy usage, transparency and convenient
testing capabilities.

In the following subsections we describe the design and the implemen-
tation of different parts of the architecture. A detailed description of the
principles we used can also be found in [11].

2.1 NaoSMAL

In our architecture we don’t use the NAOqi API directly but use our own so-
called NaoSMAL (Nao Shared Memory Abstraction Layer) NAOqi-module.
This calls the DCM API of NAOqi1 and makes it accessible for other processes
via a shared memory interface. Thus we can implement our own code as a
completely separated executable that has no dependencies to the NAOqi
framework. The benefits are a safer operation of the Nao on code crashes
(NaoSMAL will continue to run and ensures the robot will go in a stable
position), faster redeploy of our binary without restarting NAOqi and a faster
compilation since we have fewer dependencies.

1http://doc.aldebaran.com/1-14/naoqi/sensors/dcm-api.html
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Figure 2.1: Platform Interface is responsible for data transfer and execution
of the Cognition and Motion processes.

2.2 Platform Interface

In order to integrate different platforms, our project is divided into two parts:
a platform independent one and platform specific one. The platform specific
part contains code which is applied to the particular robot platform. We
support the Nao hardware platform, the SimSpark simulator2 and a logfile
based simulator. While the platform specific part is a technical abstraction
layer the platform independent part is responsible for implementing the ac-
tual algorithms. Both parts are connected by the platform interface, which
transfers data between the platform independent and specific part (see Fig.
2.1).

2http://simspark.sourceforge.net/

http://simspark.sourceforge.net/
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Figure 2.2: Overview about the different components of the module frame-
work.

2.3 Module framework

Our module framework is based on a blackboard architecture. The framework
consists of the following basic components:

Representation (objects carrying data and simple manipulation functions),

Blackboard (container storing representations as information units),

Module (executable unit, has access to the blackboard and can read and
write representations),

Module Manager (manage the execution of the modules).

Figure 2.1 describes the interaction between these components. A module
may require a representation, in this case it has read-only access to it. A mod-
ule provides a representation, if it has write access. In our design we consider
only sequential execution of the modules, thus there is there is no necessity
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for handling concurrent access to the blackboard. We decide which repre-
sentation is required or provided during compilation time. Different modules
can implement similar functionality and provide the same representations.
You can configure which of the modules should be executed at runtime and
it is also possible to dynamically change this for debugging purposes.

2.3.1 Example module

A module is a C++ class which inherits a base class which is created with
the help of some macros defining the interface of the the module.

#ifndef _MyModule_H

#define _MyModule_H

#include <ModuleFramework/Module.h>

#include <Representations/DataA.h>

#include <Representations/DataB.h>

BEGIN_DECLARE_MODULE(MyModule)

REQUIRE(DataA)

PROVIDE(DataB)

END_DECLARE_MODULE(MyModule)

class MyModule: public MyModuleBase

{

public:

MyModule ();

~MyModule ();

virtual void execute ();

};

#endif /* _MyModule_H */

Listing 2.1: MyModule.h

The MyModule class inherits the MyModuleBase class which was defined with
the BEGIN DECLARE MODULE macro. Each representation which is needed by
the module is either declared as provided or required with the correspond-
ing macro. After declaring a representation it is accessible with a getter
function, which has the name of the representation prefixed with “get’, e.g.
getDataA() for the representation DataA. The actual implementation of the
functionality of a module must be in the execute() function.

#include "MyModule.h"
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MyModule :: MyModule ()

{

// initialize some stuff here

}

MyModule ::~ MyModule ()

{

// clean some stuff here

}

void MyModule :: execute ()

{

// do some stuff here

getDataB ().x = getDataA ().y + 1;

}

Listing 2.2: MyModule.cpp

A representation can be any C++ class, it does not need to inherit any
special parent class.

class DataA

{

public:

DataA(){}

int y;

};

class DataB

{

public:

DataB(){}

int x;

};

Listing 2.3: DataA.h/DataB.h

A module must be registered in the cognition process by including it in
the file NaoTHSoccer/Source/Core/Cognition/Cognition.cpp.

#include "Modules/Experiment/MyModule/MyModule.h"

In the init method add the line:

REGISTER_MODULE(MyModule);

The order of registration defines the order of execution of the modules.
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2.4 Serialization

As described in the Section 2.3 the core of the program is structured in mod-
ules which are responsible for different tasks like image processing, world
modeling etc.. The modules communicate with each other through the black-
board by writing their results to representations. The representations are
mainly pieces of data and have no significant functionality. These represen-
tation can be made serializable, which is mainly used in two cases: logging
to a file and sending over the network for debug or monitoring reasons.

The backbone of the serialization framework is formed by the Google
Protocol Buffers3 (protobuf) library. For a representation to be serialized
(which is described by a C++ class) an according protobuf message is de-
fined. Please refer to the documentation page of protobuf for more details on
this part. The serialization procedure is then performed in two steps: first
the data is copied from the object which is to be serialized to the according
message object; in the second step the message object is serialized by a pro-
tobuf serializer to a byte stream. The deserialization process works in reverse
order. The second step is entirely done by the protobuf library. The copy
procedure in the first step, however, has to be defined explicitly. This pro-
cedure is described in the serialize() and deserialize() functions of the
template class Serializer which has to be specified for each representation
to be serialized.

The following listings illustrate the whole code necessary for serialization
of a representation. Listing 2.4 shows the header file MyRepresentation.h
containing the declaration of the representation class DataA and the according
specialization of the serializer Serializer<DataA>. Listing 2.5 contains the
probobuf message for DataA. Listing 2.6 illustrates the implementation of the
serialization functions in the file MyRepresentation.cpp.

#include <Tools/DataStructures/Serializer.h>

class DataA

{

public:

DataA()

:

y(0),

time (0.0)

{}

int y;

double time;

3https://developers.google.com/protocol-buffers

https://developers.google.com/protocol-buffers
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};

namespace naoth {

template <>

class Serializer <DataA >

{

public:

static void serialize(const DataA& representation , std::

ostream& stream);

static void deserialize(std:: istream& stream , DataA&

representation);

};

}

Listing 2.4: MyRepresentation.h

package mymessages;

message DataA {

required double time = 1;

required int32 y = 2;

}

Listing 2.5: messages.proto

#include "MyRepresentation.h"

#include "Messages/mymessages.pb.h"

#include <google/protobuf/io/zero_copy_stream_impl.h>

using namespace naoth;

void Serializer <DataA >:: serialize(const DataA& data , std::

ostream& stream)

{

// create a new message

messages ::DataA msg;

// copy data from the representation to the message

msg.set_y(data.y);

msg.set_time(data.time);

// serialize the message to stream

google :: protobuf ::io:: OstreamOutputStream buf(& stream);

msg.SerializeToZeroCopyStream (&buf);

}
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void Serializer <DataA >:: deserialize(std:: istream& stream ,

DataA& data)

{

// create a new message

messages ::DataA msg;

// decerialize the message from stream

google :: protobuf ::io:: IstreamInputStream buf(& stream);

msg.ParseFromZeroCopyStream (&buf);

// copy data from the message to the data

data.y = msg.y();

data.time = msg.time();

}

Listing 2.6: MyRepresentation.cpp
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Debugging and Tools

In order to develop a complex software for a mobile robot, we require means
for high-level debugging and monitoring (e. g., visualization of the robot’s
posture or its position on the field). Since we do not exactly know which
kind of algorithms will be debugged, there are two aspects of high impor-
tance: accessibility at runtime and flexibility. The accessibility of the debug
construct is realized based on our communication framework. Thus, they can
be accessed at runtime by using visualization software like RobotControl, as
shown in Figure 3.1.

3.1 Concepts

Some of the ideas were evolved from the GT-Architecture [12]. The following
list illustrates some of the debug concepts:

debug request (activates/deactivates code parts),

modify allows modification of a value (in particular local variables)

stopwatch measures the execution time

parameter list allows to monitor and modify lists of parameters

drawings allows visualization in 2D/3D; thereby it can be drawn into the
image or on the field (2D/3D)

plot allows visualization of values over time

As already mentioned, these concepts can be placed at any position in the
code and can be accessed at runtime. Similar to the module architecture,

13
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the debug concepts are hidden by macros to allow simple usage and to be
able to deactivate the debug code at compilation time, if necessary.

In order to use a debug request in the code you have to register it once
with the DEBUG REQUEST REGISTER macro:

DEBUG_REQUEST_REGISTER("My:Debug:Request", "Description of

the debug request", true);

After that, you can use the DEBUG REQUEST macro to wrap code that should
be only executed when the debug request is active.

DEBUG_REQUEST("My:Debug:Request",

std::cout << "This code is not executed normally" << std

::endl;

++c;

);

MODIFY works in a similar way, but does not need any registration. By,
for example, wrapping a variable and defining an identifier, this variable can
be changed later from RobotControl.

double yaw = 0;

MODIFY("BasicTestBehavior:head:headYaw_deg",yaw);

In addition to these means for individual debugging, there are some more
for general monitoring purposes: the whole content of the blackboard, the
dependencies between the modules and representations, and execution times
of each single module. The Figure 3.1 illustrates visualizations of the debug
concepts. In particular a field view, 3D view, behavior tree, plot and the
table of debug requests are shown.

3.2 RobotControl

The various debugging possibilities are organized in different dialogs. The
following list consists of our most used RobotControl Dialogs.
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Figure 3.1: The RobotControl program contains different dialogs. The
3DViewer (top left) is used to visualize the current state of the robot; the
Value Plotter dialog (bottom left) plots some data; the Field Viewer dia-
log (top center) draws the field view; the Behavior dialog (bottom center)
shows the behavior tree; the Debug Request Center dialog (right) is for en-
abling/disabling debug requests.

Behavior Viewer

Shows the behavior tree
for the current behavior.
The compiled XABSL
behavior needs to be
sent to the robot first
and then an agent can be
selected to be executed.
With ‘Add Watch’ you
can track XABSL input
and output symbols.
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Debug Requests

(De-)activates the debug
request code. Usually
a debug request draws
something on the field
viewer or on the cam-
era images. For further
information about indi-
vidual debug requests,
have a look at the source
code.

Field Viewer

There are views for dif-
ferent field sizes and a
local view. Certain de-
bug requests draw on
these views. For exam-
ple, you could draw the
robots’ positions on the
field by activating the
corresponding debug re-
quest.

Image Viewer

Can show the top and
bottom images. There
are debug requests that
draw on the camera im-
ages, if they are active.
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Logfile Recorder

Records a log file on a
robot with manually se-
lected representations.

Modify

The Modify macro
allows changing values
of variables declared
within this macro at
runtime.

Module Configuration Viewer

Shows which mod-
ules are currently
(de-)activated. Also
indicates, which other
modules are required
(left) and provided
(right) by each module.
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Parameter Panel

Shows parameters de-
fined in our configura-
tion files. It is possible
to change the values at
runtime. The variables
must be registered as pa-
rameters in the code.

Plot 2D

Shows plots activated by
plot debug requests.

Representation Inspector

Shows the data that is
written to the black-
board by each represen-
tation.
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Stopwatch Viewer

Shows the execution
time for each module.

Team Communication Viewer

Shows all connected ro-
bots and some of their
provided status informa-
tion (e.g. ip address,
battery charge, tempera-
ture, etc.). This dialog is
mainly used during com-
petitions to get a quick
view of the robots health
status. Positions of the
robots, role decision and

seen ball for each robot are visualized in the FieldViewer 3.2.
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3.3 Robot Setup and Deployment

In this section we give an overview over our deployment and robot setup
procedure. Changing the configuration of the robot, e.g., deployment of
the binary, network setup etc., is a critical point during both, development
and competition. To minimize the chance of error we developed a set of
proceduders and tools.

3.3.1 Deployment Procedure

Currently we have two different deployment procedures:

� deployment via usb flash drive

� deployment via network

The general procedure consists of two steps:

1. assemble deployment directory containing all files and configurations
to be deployed as well as a corresponding deployment shell script;

2. copy this directory to the robot and run the deployment script;

This division minimizes the chance of mistakes and allows for easier debug-
ging, i.e., if something went wrong, the error is either in the locally assembled
deployment directory or has occurred during the deployment on the robot -
both can be inspected separately. At the same time this locally assembled
deployment directory serves as a binary backup, which can be very useful
during the competition, e.g., if something turned out to be wrong with the
new version just before the game and one needs to switch back to the binary
from the last game.

The beginning and the end of the deployment procedure are indicated
by different sounds. This way the state of the robot and the progress of the
deployment can be easily monitored, this is especially helpful when setting
up a whole team before a game.

3.3.2 NaoSCP

NaoSCP is a setup and deploymsuch thingsent tool. It primarily has three
tasks: (1) initialize a new robot, e.g., copy libraries and scripts, (2) set the
network configuration and (3) deploy naoth binary and configurations to the
robot. All these tasks can be done on a command line as well, the main aims
for designing NaoSCP were simplification of the deployment process, ensured
backup of deployed binaries and reduction of the chance of mistakes during
setup in critical situations, e.g., before a game at the world championship.
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Figure 3.2: NaoSCP user interface. The log panel on the right displays
status of the deployment process. The left side contains the panels for the
configuration of the deployment / setup process: Network configures the
network setup; NaoTH is used to adjust the configuration relevant for the
deployed binary, e.g., player numbers. The buttons in the left bottom tool
bar trigger particular deployment and setup actions like writing the network
configuration to the robot or copying a new binary to a deployment USB
flash drive.

Usage Remarks

The following describes the particular components of the NaoSCP user in-
terface as illustrated in the Figure 3.2.

Log Window (right) shows information regarding the progress of the de-
ployment process, e.g., copied files, connection errors and such.

Network configuration (top left) is used to setup the LAN and WLAN;

NaoTH dialog (left) configures the deployment of the game binary and
contains things like the path to the source where the binaries can be
found, used configuration scheme and player numbers for each robot
based on their IP address;

Action toolbar (bottom left) contains the buttons for the four different
deployment / setup actions: Send to Robot deploys the complied code
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and configuration to a particular robot via network. The text field
left of the button defines the last byte of the ip address of the target
robot. The network configuration from the dialog Network is used to
determine the complete address. In this particular example the LAN
target address would be 192.168.13.82. Thereby LAN is tried first and
in case of failure WLAN is tried; Write to stick writes the deployment
directory to a USB flash drive. If the flash drive already contains a
deployment directory, a backup version of it is created. The text field
left to the button holds an optional tag, which is used to organize
the backups on the flash drive; Set Network configures the robots net-
work according the the settings in the dialog Network ; Initialize Robot
will initialize a new robot, e.g., after a factory reset. This action will
copy additional libs, configure the NaoQi modules, necessary starting
scripts for binaries and for automatic mounting and running of USB
flash drives. Additionally the network is configured and the binary is
deployed like previously described;

3.3.3 USB flash drive

A deployment flash drive can be created manually or (as described above)
via the NaoSCP tool. As the minimum requirement there should be an
executable shell script named “startBrainwashing.sh“. When the flash drive
with a shell script (and a deployment directory) is connected to the robot,
it is mounted automatically to a defined directory and the setup script is
executed. The script is responsible for copying the particular binary and/or
configuration files. The begin and end of the deployment procedure are
indicated by different sounds. This way is preferred when deploying software
on several robots, e.g., setting up a team before a game.

Flash drive variants

Currently we have different kinds of USB flash drives to accomplish different
kinds of deployment or collection tasks.

Deploying As described above the deployment flash drive is used to copy
new binaries and/or configuration files to the robot.

Collecing log files The “collect log files“ flash drive is used to copy the
recorded log files from the robot. This is primarily used after games to be
able to analyze possible misbehavior of the robot. Otherwise, if the robot
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is shut down, the log files would be lost since we record the logfiles in main
memory.

Setting network The network flash drive is used to set the network con-
figuration of the robot (like IP address, etc.). Especially for the Wi-Fi con-
figuration this method is useful to quickly set up all need robots before a
game.

3.4 Logging

Analysis and evaluation of the algorithms running on the robot is a big
challenge.

Our team has a long history in logging (our logs from 2010 are still read-
able and useful). Through the years we developed a comprehensive infras-
tructure for recording log files on individual robots during the games as well
as tools for synchronizing these log files with videos of the game and analyzing
them.

A log file is recorded by a robot in its local file system, and is collected
later through network or USB (cf. Section 3.3.3). Currently we use two
different modes for recording such log files - automatic game log and log of
manually selected representations.

The game log is only recorded when the robot is in a playing state. It is
recorded with the cognition pace, i.e., each time a new image arrives (each
33ms), and contains mainly the behavior state as well as additional infor-
mation needed in a particular situation. For example during the RoboCup
2016 we recorded the best four ball candidate patches from each image in
each frame to create a database of realistic samples for ball detection (cf.
Section 4.7.2). The game logs recorded by individual robots can be synchro-
nized with the video of the game, which can be very useful to analyze and
find bugs in the behavior patterns of the robot and ultimately in the team
behavior.

Figure 3.3 illustrates the manual synchronization interface. To simplify
the synchronization procedure changes in the game state, e.g., from ready to
play, are automatically extracted from the log file. The operator can select
a suitable event from a drop-down list. To synchronize both, the operator
then needs to find the corresponding time in the video. Good events for
synchronization are often changes from init to ready - in the video one can
clearly see when the robots receive the signal from the game controller and
start to move.
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The manual logs can be configured and triggered through the according
control dialog in the RobotControl as shown in the Section 3.2. This is used
to record specific data for debugging or analysis in isolated experiments. A
good example are log files containing full images of particular situations for
general image processing, which can be only recorded for a short period of
time due to the large size.

Figure 3.3: Synchronization Interface for individual log files and videos of a
game.

3.4.1 Logfile Format

As described in the Section 2.3 the state of the robot is stored in represen-
tations on the blackboard. Any of these representations can be recorded to
a log file if it has a designated serializer as described in Section 2.4. The
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format by which the representations are stored in a logfile is pretty straight
forward. Each representation is stored in a package of the following form:

<frame number ><representation name ><size ><data >

Where <frame number> is 4 byte long, <representation name> is a string ter-
minated with a zero character ’\0’ and <size> is 4 bit long length of the
following binary <data>. A logfile is simply a sequence of such packages. Im-
portant to note is that when several different representations are recorded in
each frame they are written in the same way, so the final log looks something
like this:

1 FrameInfo ...

1 ImageTop ...

1 CameraMatrix ...

2 FrameInfo ...

2 ImageTop ...

2 CameraMatrix ...

...

Annotate and Evaluate Logs Annotation interface was created and
used to annotate different kick actions executed by our robots in the videos
recorded during the games at the RoboCup in 2015. The kick events were
automatically extracted from the log files recorded by the individual robots
and aligned with the video. Thus the human annotator can simply click
through the particular events and inspect them in a short time. The results
were used to evaluate the performance of the kick decision algorithm and
were published in [10]. Figure 3.4 illustrates an example of a labeling session
for the first half of the game with the team NaoDevils at the RoboCup 2015.
The following two links lead to an online demo and to the public repository
with the code of the labeling interface:
https://www2.informatik.hu-berlin.de/~naoth/videolabeling/index.php

https://github.com/BerlinUnited/VideoLogLabeling

3.5 Simulation

As a common experience, there are big gaps between simulation and reality
in robotics, especially with regards to basic physics with consequences for low
level skills in motion and perception. There are some researchers who have
already tried to narrow this gap, but there are only few successful results so
far. We investigate the relationships and possibilities for methods and code
transferring. Consequences can lead to better simulation tools, especially in

https://www2.informatik.hu-berlin.de/~naoth/videolabeling/index.php
https://github.com/BerlinUnited/VideoLogLabeling
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Figure 3.4: Labeling interface used to annotate kick events regarding their
quality. At the bottom are time lines for each of the robots. Different actions
are represented by buttons on the time line with different colors. On the
right the robots estimated state is visualized, i.e., estimation of its position,
ball model and obstacles. On the left are three categories of binary labels
describing the quality of the action.

the 3D Simulation League. At the moment, we use the SimSpark simulator
from the 3D Simulation League with the common core of our program, see
Figure 3.5. As already stated, therewith, we want to foster the cooperation
between the two leagues and to improve both of them.

When compared to real Nao robots, some devices are missing in the
SimSpark, such as LEDs and sound speakers. On one hand, we extended
the standard version of SimSpark by adding missing devices like camera, ac-
celerometer, to simulate the real robot. On the other hand, we can use a
virtual vision sensor which is used in 3D simulation league instead of our
image processing module. This allows us to perform isolated experiments on
low level (e. g., image processing) and also on high level (e. g., team behav-
ior). Also we developed a common architecture [11], and published a simple
framework allowing for an easy start in the Simulation 3D league.

Our plan is to analyze data from sensors/actuators in simulation and from
real robots at first and then to apply machine learning methods to improve
the available model or build a good implicit model from the data of real
robot. Particularly, we plan to:

� improve the simulated model of the robot in SimSpark,
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Figure 3.5: NAO robots run in Standard Platform League (left) and 3D
Simulation League (right).

� publish the architecture and a version of SimSpark which can be used
for simulation in SPL,

� transfer results from simulation to the real robot (e. g., team behavior,
navigation with potential field).

So far, we have developed walking gaits through evolutionary techniques
in a simulated environment [6, 5]. Reinforcement Learning was used for the
development of dribbling skills in the 2D simulation [14], while Case Based
Reasoning was used for strategic behavior [4, 2]. BDI-techniques have been
investigated for behavior control, e. g., in [1, 3].



Chapter 4

Visual Perception

Visual perception is the primary way for the NAO robot of perceiving its
environment. To reduce computational complexity our vision is based on
a reliable field color detection. This color information is used to estimate
the boundaries of the visible field region in the image. Which is done while
scanning for line edgels - oriented jumps in the brightness channel. Detection
of other objects - lines, ball, goals - is performed within this field region. Lines
are modeled as a graph of the aforementioned edgels. Ball detection consists
manly of two steps - key points (ball candidates) are detected using integral
image and difference of gaussians, which are then classified by a trained
cascade classifier. Goal post detection uses scan lines along the horizon.

Figure 4.8 shows the dependency graph for the vision modules1 and the
representations they provide, which were used at the RoboCup 2016 compe-
tition. In the following we describe some of the important modules in more
detail.

4.1 Green Detection

This section describes a new approach to classify the field color which has
not been used at the RoboCup 2015.2 This constitutes the first step in
the attempt for a automatic field color detection. Thereby we analyze the
structure of the color space perceived by the robot NAO and propose a simple
yet powerful model for separation of the color regions, whereby green color
is of a particular interest.

To illustrate our findings we utilize a sequence of images from recorded

1For definition of Modules and Representations see Section 2.
2For the first time this approach has been presented in November 2015 at the RoHOW

workshop in Hamburg.

28
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BallCandidateDetector

BallCandidates MultiBallPercept

ScanLineEdgelDetector

ScanLineEdgelPercept

IntegralImageProvider

BallDetectorIntegralImage

GoalFeatureDetector

GoalFeaturePercept

FieldDetector

FieldPercept

FieldColorClassifier

FieldColorPercept ColorTable64

LineGraphProvider

LineGraphPerceptProbabilisticQuadCompas

GoalDetector

GoalPostHistograms GoalPercept

Figure 4.1: Overview over the vision system. Green boxes illustrate mod-
ules and round nodes visualize the representations with arrows indicating
the provide-require relationships between them. An outgoing arrow from a
module A to a representation R means A provides R; an incoming arrow
from R to A means R is required by A.

by a robot during the Iran Open 2015. Figure 4.2 (left) shows a represen-
tative image from this sequence. To analyze the coverage of the color space
we calculate two color histograms over the whole image sequence. In the
Figure 4.3 (left) you can see the uv-histogram, which is basically a projec-
tion of the yuv-space onto the uv-plane. The light green points indicate the
frequency of a particular uv-value (the brighter the more). One can clearly
recognize three different clusters: white and gray colors in the center; green
cluster oriented towards the origin; and a smaller cluster of blue pixels in the
direction of the u-axis which originate from the boundaries around the field.
For the second histogram we choose a projection plane along the y-axis and
orthogonal to the uv-plane which is illustrated in the Figure 4.3 (left) by the
red line. This plane is chosen in a way to illuminate the relation between
the gray cluster in the center and the green cluster. Figure 4.3 (middle) il-
lustrates the resulting histogram. Here we clearly see the gray and the green
cluster.
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Figure 4.2: (left) Example image from the Iran Open 2015. (right) Pixels
classified as green are marked green; pixels with too low chroma marked red;

From these two histograms we can make following observations: all colors
seem to be concentrically organized around the central brightness axis , i.e.,
gray axis (128, 128, y), which corresponds to the general definition of the yuv-
space; the colors seem to be pressed closer to the gray axis the darker they
are. In particular all colors below a certain y-threshold seem to be collapsed
to the gray axis. So we can safely claim that for a pixel (y, u, v) always holds
y = 0⇒ u, v = 128. On the contrary the spectrum of colors gets wider with
the rising brightness. Speculatively one could think that the actual space
of available colors is a hsi-cone fitted into the yuv-cube. The collapse of
the colors towards the gray axis might be explained by an underlying noise
reduction procedure of the camera.

Based on these observations we can divide the classification in two steps:
(1) separate the pixels which do not carry enough color information, i.e., these
which are too close to the gray axis. Figure 4.3 (middle) illustrates a simple
segmentation of the gray pixels with a cone around the center axis illustrated
by the red lines; (2) classify the color in the projection onto the uv-plane.
Figure 4.3 (right) shows the uv-histogram without the gray pixels. Red lines
illustrate the separated uv-segment which is classified as green. This way we
ensure independence from brightness. The equation 4.3 illustrates the three
conditions necessary for a pixel (y, u, v) to be classified as green. The five
parameter are bo ∈ [0, 255] the back cut off threshold, bm, bM ∈ [0, 128] with
bm < bM the minimal and the maximal radius of the gray cone, and finally
am, aM ∈ [−π, π] defining the green segment in the uv-plane.
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(u− 128)2 + (v − 128)2 > max

(
bm, bm + (bM − bm) · y − bo

255− bo

)
(4.1)

atan2(u− 128, v − 128) > am (4.2)

atan2(u− 128, v − 128) < aM (4.3)

v

u

y

chroma

v

u

Figure 4.3: (left) UV-histogram for a log file taken at the Iran Open 2015.
Red line illustrates the projection plane along the green region for the Y-
Chroma histogram (middle); (middle) Y-Chroma-histogram along the pro-
jection plane illustrated in (left) figure. Red lines illustrate the gray-cone,
i.e., area with not enough color information to be classified as a particular
color; (right) UV-Histogram without pixel falling into the gray-cone as illus-
trated in the (middle) figure. Red lines illustrate the segment to be classified
as green.

The classification itself doesn’t require an explicit calculation of his-
tograms. At the current state it’s a static classification depending on five
parameters to define the separation regions for the gray and green colors.
These parameters can be easily adjusted by inspecting the histograms as
shown in the Figure 4.3 and have proven to be quite robust to local light
variation.

The structure of the color space depends of course largely on the adjust-
ments of the white balance. We suspect a deviation from a perfect white
balance adjustment results in a tilt of the gray cluster towards blue region
if it’s to cool and towards red if it’s too warm. The tilt towards blue can
be seen in the Figure 4.3 (middle). This might be a queue for an automatic
white balance procedure which would ensure an optimal separation between
colored and gray pixels. The green region shifts around the center depending
on the general lighting conditions, color temperature of the carpet and of
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course white balance. In the current example the green tends rather towards
the blue region. Tracking these shifts might be the way for a fully automatic
green color classifier which would be able to cover the variety of the shades
to enable a robot to play outside.

4.2 ScanLineEdgelDetector

Figure 4.4: With top to down scanlines [green lines] the edges of possible
field lines [black lines] including their orientation are detected (left) and the
last field colored points are assumed as endpoints of the field [green circles]
(right).

With this module we detect field line border points and estimate some points
of the field border. To do this, we use scanlines, but only vertical ones. Along
every scanline jumps are detected in the Y channel, using a 1D-Prewitt-Filter.
A point of the field lines border is located at the maximum of the response of
that filter. We estimate with two 3x3-Sobel-Filters (horizontal and vertical)
the orientation of the line. With the result of the field color classification we
detect along every scanline a point, which marks the border of the field.

4.3 FieldDetector

With the field border points, estimated with the ScanLineEdgelDetector, we
calculate for each image a polygon, which is representing the border of the
field in the image.
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Figure 4.5: The endpoints provided by the ScanLineEdgelDetector (left) are
used to calculate the field border (right).

4.4 LineGraphProvider

This module clusters neighbouring line border points, detected by ScanLi-
neEdgelDetector.
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4.5 GoalFeatureDetector

This module is the first step of the goal post detection procedure. To detect
the goal posts we scan along the horizontal scan lines parallel to the artificial
horizon estimated in ArtificialHorizonProvider. Similar to the detection of
the field line described in Section 4.2 we detect edgels characterized by the
jumps in the pixel brightness. These edgels are combined pairwise to goal
features, which are essentially horizontal line segments with rising and falling
brightness at the end points. Figure 4.6 illustrates the scan lines as well as
detected edgels (left) and resulting goal post features (right).

Figure 4.6: The scan lines [grey lines] above and below the estimated horizon
are used to detect the goal post border points and the orientation of the
corresponding edges [colored and black segments] (left). The results are
features of possible goal posts [blue line segments with red dots] (right).

4.6 GoalDetector

The GoalDetector clusters the features found by the GoalFeatureDetector.
The main idea here is, that features, which represent a goal post, must be
located underneath of each other. We begin with the scan line with the lowest
y coordinate and go through all detected features. Then the features of the
next scan lines (next higher y coordinate) are checked against these features.
Features of all scan lines, which are located underneath of each other, are
collected into one cluster. Each of these clusters represents a possible goal
post.
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Figure 4.7: Goal features detected as described in 4.5 are clustered to form
candidates for the goal posts (left). These candidates are evaluated regarding
expected dimensions as well as their relation to the field. The candidates
fulfilling all necessary criteria are selected as goal post percepts (right green
boxes).

From the features of a cluster, the orientation of the possible goal post
is estimated and used to scan up and down along the estimated goal post.
This is done to find the foot and the top point of that goal post. A goal post
is seen as valid, if its foot point is inside of the field polygon as described
in the Section 4.3. Using the kinematic chain the foot point is projected
into the relative coordinates of the robot. Based on this estimated position
the expected dimensions of the post are projected back into the image. To
be accepted as a goal post percept a candidate cluster has to satisfy those
dimensions, i.e., the deviation should not exceed certain thresholds. The
Figure 4.7 illustrates the clustering step and the evaluation of the candidate
clusters. Although there seem to be a considerable amount of false features,
both posts of the goal are detected correctly.

4.7 Black&White Ball Detection

In 2015 the standard ball used in competitions changed to a black&white
foam ball as illustrated in Figure 4.8. Detection of such a ball in the SPL
setup poses a considerable challenge. In this section we describe our strategy
for detecting a black&white ball in a single image and the lessons learned.

Given an image from the robot camera the whole approach is basically
divided into two steps: finding a small set of suitable candidates for a ball
by a fast heuristic algorithm, and classifying the candidates afterwards with
a more precise method.
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Figure 4.8: Examples of the black&white as seen by the robot.

4.7.1 Candidate Search – Perspective Key Points De-
tection

Properties of the ball as an object that can be assumed as known include

� it has a fixed size;

� it has a round shape (symmetrical shape);

� it is black and white (so it does not contain other colors);

� the pattern is symmetric;

These properties have some implications on the appearance of the ball in a
camera image:

� knowing the pose of the camera we can estimate the balls size in the
image;

� it mostly does not contain other colors than black and white (chroma
is low). Note: beware of reflections;

� looking only at the color distribution we can assume it’s rotation in-
variant;

Having the limited computational resources in mind, we are looking now for
following three things:

1. a simple object representation for a ball in image;

2. an effective and easy to calculate measure quantifying the likelihood
such object to represent an actual ball;

3. a tractable algorithm to find a finite set of local minimas of this measure
over a given image (these minimal elements we then call candidates);
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Representation: In our case we define a ball candidate (more general a
key point) as a square region in the image which is likely to contain a ball.
Such a key point c = (x, y, r) can be described by its position in the image
(x, y) and its side radius (half side length) r. Basically we represent a circular
object by the outer square (bounding box) enclosing the circle. This leads
to a vast number of possible candidates in a single image and a necessity for
an efficient heuristic algorithm to find the most likely ones.

Measure: Intuitively described, a good key point is much brighter inside
than on its outer border. For a key point c = (x, y, r) we define its intensity
value I(c) by

I(c) :=
1

4r2

x+r∑
i,j=x−r

Y (i, j) (4.4)

where Y (j, i) is the Y -channel value of the image at the pixel (i, j). For the
intensity of the outer border around c with the width δ > 0 holds I(cδ)−I(c),
with cδ := (x, y, r · (1 + δ)). Now we can formulate the measure for c by

V (c) := I(c)− (I(cδ)− I(c)) = 2 · I(c)− I(cδ) (4.5)

This measure function can be calculated very effectively using integral im-
ages. Figure 4.9 (left) illustrates the measure function for the valid pixels of
the image.

Finding the local maxima: To save resources the search is performed
only within the estimated field region (cf. Section 4.3). For a given point p =
(i, j) in image we estimate the radius rb(i, j) that the ball would have at this
point in the image using the camera matrix. This estimated radius is used
to calculate the measure function at this point: V (p) := V ((i, j, rb(i, j))).
Currently we only consider points at which the ball would be completely
inside the image. The following algorithm illustrates how the local maxima
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of this function are estimated:

Algorithm 1: Find local maxima.

Data: Set of possible key points A
Result: List of locally maximal key points K
K ← ∅;
for p ∈ A do

insert← true;
for q ∈ K do

if overlaps(p,q) then
if V (p) > V (q) then

K ← K \ {q};
else

insert← false;
end

end

end
if insert then

K ← K ∪ {p};
end

end

The basic idea is to keep only the key points with higher value than any
other overlapping key points, i.e., the one with the highest value in it’s neigh-
borhood. To generate the list of possible key points we iterate over the image
and generate key points for each pixel. Of course a number of heuristics is
used to make the process tractable. In particular we only consider every 4th
pixel and only if it is within the estimated field region. The list of local max-
ima is also limited to 5 elements - the list is kept sorted and any additional
key points with lover value are discarded. Figure 4.9 (right) and Figure 4.10
illustrate the detected best 5 local maxima of the measure function.

4.7.2 Classification

In the previous section we discussed how the number of possible ball candi-
dates can be efficiently reduced. At the current state we consider about 5
candidates per image. In general these candidates look very ball alike, e.g.,
hands or feet of the robots, and cannot be easily separated. To solve this we
follow the approach of supervised learning, which mainly involves collecting
positive and negative samples, and training a classifier. In the following we
outline our approach for fast collection of the sample data and give some brief
remarks about our experience with the OpenCV Cascade Classifier which we
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Figure 4.9: Illustration of the value function for finding the ball key points.
Semitransparent overlay illustrates the searched area. Intensity of the red
color shows the value function.

used during the RoboCup competition in 2016.

Sample Data Generation

Collecting sample data basically involves two steps: collecting images from
game situations and labeling the ones containing the ball. This can be a
very tedious and time consuming task. To simplify and accelerate the pro-
cess we collect only the candidate patches calculated by the algorithm in
Section 4.7.1. This allows to collect the data during a competition game at
full frame rate. This however produces a vast amount of data to be labeled.
Because the patches are quite small (we experimented with sizes between
12px× 12px and 24px× 24px), a large number of patches can be presented
and reviewed at once. Figure 4.11 illustrates two examples of the labeling
interface. Patches are presented in pages consisting of a 10 × 10 matrix.
Labels can be applied or removed simply by clicking with the mouse at a
particular patch.
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Figure 4.10: Illustration of detected key points in the situations where the
ball is close to the robot or overlapping with the line.

Viola-Jones Classification

At the current point we use a classical Cascade Classifier from the OpenCV
library with Haar Features and Local Binary Patterns. There is an abun-
dance of literature on how to train your own classifier with OpenCV, so here
are only a few remarks from our experience. Figure 4.12 shows examples of
detected ball.

� training requires a large amount of file access operations (training im-
ages), so the whole procedure is significantly faster if performed in a
memory mapped partition, e.g., /tmp directory on a Linux machine;

� results are greatly improved by careful selection of ball examples (we
used only about 50 (!)) and generation of the positive samples using
opencv createsamples;

� Haar Features show a bit better recognition results (this is what we
currently use), but the training procedure with Local Binary Patterns
is significantly faster;
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Figure 4.11: Examples of the labeling interface. Patches are presented in
pages consisting of a 10 × 10 matrix. Labels are applied or removed by a
mouse click at a particular patch.

Figure 4.12: Examples of the detected ball.
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point we would like to thank in particular the members of the team FU-
manoids and Thomas Reinhard from HTWK for interesting discussions and
ideas.



Chapter 5

Modeling

In order to realize a complex and successful cooperative behavior it is neces-
sary to have a appropriate model of the surrounding world. In our approach
we focus on local models of particular aspects of the environment. In this
section we present two local models: a compass and a goal model.

5.1 Camera Matrix Calibration

Camera matrix is the coordinate transformation of a camera in relation to the
local coordinate system of the robot. The camera matrix is used to establish
the relation between objects detected in the image and their position relative
to the robot. For instance, the center of the detected ball in the image can
be projected on the ground plane and so the distance to the actual ball can
be estimated. In certain way, the camera matrix stands between the basic
perception and the model of the situation affecting directly the quality of
self localization, ball model and such. Thus, an accurate estimation of the
camera matrix is crucial for the robot’s perception of its environment.

One way to estimate the camera matrix is the usage of the kinematic
chain in combination with the accelerometer and gyrometer to estimate the
rotation. This approach, however, can yield substantial errors, as the pa-
rameters of the kinematic chain differ between the robots due to differences
in manufacturing and the effect of wearing out over time. In particular the
following 11 joints have been observed developing major offsets: (body ro-
tation pitch/roll, head rotation pitch/roll/yaw, top/bottom camera rotation
pitch/roll/yaw).

In order to compensate for these errors we apply calibration offsets to
these joints. To calculate the offsets we utilize the line percepts. The basic
approach is to place the robot at a known position on the field and allow it to

42
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collect a set of line perceptions by looking around. Detected line perceptions
in the image are projected on the ground plane using the camera matrix.
The projected results are compared with the actual lines on the field. The
resulting error can be minimized by adjusting the aforementioned offsets. As
the minimization algorithm we use the traditional Gauss-Newton algorithm.
Figure 5.1 illustrates the projection of the collected line perceptions before
(left) and after (right) the minimization procedure.

The calibration procedure involves in detail the following steps:

� Place the robot in the center of the circle with its ankle joints, facing
a goal.

� In RoboControl deactivate the modul XabslBehaviorControl and ac-
tivate the modul CameraMatrixCorrectorV2.

� After that activate the Debug Request: collect calibration data

and wait until the robot has turned its head back and forth two times.

� Then deactivate this Debug Request and enable the
calibrate camera matrix line matching Debug Request.

� To visualize the process you can enable the draw projected edgels

Debug Request before starting the calibration.

� Make sure to deactivate all enabled Debug Request and reset the modul
Settings after finishing the calibration.

5.2 Probabilistic Compass

We estimate the orientation of the robot on the field based on the detected
line edgels utilizing the fact, that all field lines are either orthogonal or par-
allel to the field. Based on the orientations of the particular projected edgels
it is possible to estimate the rotation of the robot up to the π symmetry. We
calculate the kernel histogram over the orientations of the particular pro-
jected edgels, i.e., edgels in the local coordinates of the robot. To utilize the
symmetry of the lines we use sin as distance measure. Let (xi)

n
i=1 be the set

of edgel orientations. We calculate the likelihood S(x) for the robot rotation
x ∈ [−π, π) as shown in the equation 5.1.

S(x) =
n∑
i=1

exp

{
−sin2(2 · (x− xi))

σ2

}
(5.1)
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Figure 5.1: Projection of the line point perceptions before (left) and af-
ter(right) camera calibration. The assignments of the perceived line points
to the field lines, which are used to calculate the error, are illustrated as
black thin lines.

This compass is calculated in each frame where enough edgels have been
detected. It has shown to be robust regarding outliers, e. g., when some edgels
are detected in a robot. It can be directly used to update the likelihood of
particles in the self locator. Figure 5.2 shows a set of edgels detected in a
particular frame on the left side. On the right side the according histogram
is plotted.

5.3 Multi-Hypothesis-Extended-Kalman-Filter

Ball Model

Although there is usually only one ball involved in a RoboCup game, there
are several good reasons for being able to represent and track several ball hy-
potheses at the same time. The main reason however are the false-positives.
Due to the change to the new black and white ball as described in the Sec-
tion 4.7, the chance of a false positive became much higher. The most of the
false detections appear only sporadically and do not persist over long time.
Tracking several possible balls at the same time allows to effectively separate
the true (persistent) detections from the false (sporadic) ones.

Each candidate (hypothesis) is tracked by an Extended Kalman filter.
The Extended Kalman filter is used with linear state transition model and a
nonlinear observation model. The state is defined as the location and velocity
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Figure 5.2: Left figure visualizes the edgel graph in local coordinates of the
robot in a particular frame. Right illustrates the kernel histogram over the
orientations of edgels shown left, calculated with formula 5.1.

of the ball in the robot’s local Cartesian coordinates while the measurement
is taken as the vertical and horizontal angle in the camera image.

At first all hypotheses (ball candidates) are removed and not considered
in the following steps which weren’t updated for an amount of time and theirs
variance in location became too high. Then the odometry of the robot since
the last update is applied transparently to the states and covariances of the
Extended Kalman filters so they stay in the robot’s local coordinate system.
Next, the current postion and velocity of the ball candidates are calculated
according to the linear state transition model. The friction between ball
and carpet is modeled as negative acceleration in opposite direction to the
current velocity and incorporated into the linear state transition model as a
control vector. After that the ball candidates in the image are assigned to
the hypotheses and the update is performed. Each measurement is assigned
at most to one hypothesis and vice versa. If no matching hypothesis is found
a new Kalman filter is created which will represent a new hypothesis. The
final ball model for the behavior is the hypothesis which is the closest to the
robot and is updated frequently.

5.4 Multi-Hypothesis Goal Model (MHGM)

In this section we describe a multi-hypothesis approach for modeling a soccer
goal within the RoboCup context. The whole goal is rarely observed and we
assume the image processing to detect separate goal posts. So we represent
the goal by its corresponding posts. To reduce complexity of the shape of



CHAPTER 5. MODELING 46

uncertainty we model the separate goal posts in local robot coordinates. The
ambiguous goal posts are tracked by a multi-hypothesis particle filter. The
actual goal model is extracted from the set of post hypotheses.

The joint uncertainty can be subdivided into noise, false detections and
ambiguity. Each of these components is treated separately in our approach.
The multi-hypothesis filter has to take care of noise and false detections, but
it does not resolve the ambiguity of the goal posts. Instead, all occurring
goal posts are represented by corresponding hypotheses and the ambiguity is
solved on the next level when the goal model is extracted. Particle filters are
great in filtering noise and are shown to be very effective for object tracking.
To deal with sparse false positives we introduce a delayed initialization proce-
dure. We assume a false positive to result in an inconsistency, i. e., it cannot
be confirmed by any existing goal post hypothesis. In this case the percept
is stored in a short time buffer for later consideration. This buffer is checked
for clusters, in case a significant cluster of goal post percepts accumulated
during a short period of time, a new hypothesis is initialized based on this
cluster. The dense false detections result in post hypotheses, which is later
ignored while extracting the goal.

More detailed description of the algorithm as well as the experimental
results can be found in [13].

5.5 Simulation Based Selection of Actions

The robot is capable of different kicks and should given a particular situation,
e.g., the robot’s position, the position of the ball and obstacles, determine
which kick is the optimal kick to perform in this situation. A naive geomet-
ric solution which selects a kick based on the robot’s direction towards the
opponent goal does not account for uncertainty of the actual execution of the
kick. Furthermore the distance of the kick is not considered in this approach.
An improved kick selection algorithm was developed which is based on a for-
ward simulation of the actions. Thereby each possible kick is simulated and
the best kick is chosen based on the outcome, i.e., the position of the ball
after the kick. Uncertainty and additional constraints can be integrated in a
straight forward way.

5.5.1 Definition of an Action

An Action is a set of parameters which describe a probability distribution of
the possible ball location after the execution of a kick. Currently there are
4 kicks, two forward kicks and two sidekicks as well as the case of turning
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Figure 5.3: The left figure illustrates the experiment setup. The robot faces
the goal and an additional goal post is placed to its left side. From the object
recognition perspective, this post is identically to the real goal posts. The
figure in the center visualizes all percepts collected during the course of the
experiment. The full circles illustrate perceived goal posts, whereby their
color indicates the classification by the MHGM: red - left post, blue - right
post, gray - unknown post, black - none (percept buffer). The circles with
holes stand for artificially generated sparse false positive perceptions. The
right figure illustrates a snapshot of the state modeled by the MHGM at the
end of the experiment. Drawn are the particle filter representing the goal
posts with corresponding deviations as well as the extracted goal model.
Similar to the figure in the center, the colors of the particles indicate the
classification of the hypotheses.

around the ball. The probability distribution is modeled as a Gaussian dis-
tribution. The parameters which describe the distribution for one action are
velocity, angle and their standard deviations.

5.5.2 Determine the parameters

To calculate the initial velocity of a kick the distance the ball rolled after a
kick was measured in an experiment. By using the stopping distance formula
the initial velocity of one kick can be calculated by

υ0 =
√
d · 2cR · g (5.2)

where υ is the initial velocity of the ball. cR the rolling resistance coefficient
and g the gravitational constant. The mean of υ0 of multiple repetitions
defines the initial velocity of this action. The standard deviation of the
repetitions defines the standard deviation for the velocity of the kick. The
parameter for angle is predefined for every action, e.g., it’s zero for forward
kicks and 90 degrees for left sidekick. The standard deviation for the angle is
the standard deviation of the angle measurements from the previous exper-
iment. The coefficient of friction is calibrated to a real surface from rolled
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Figure 5.4: Kick action model: distributions of the possible ball positions
after a sidekick and the long kick forward with the right foot. Blue dots
illustrate experimental data.

distances of the ball rolling on this surface with a known initial velocity. For
this, we performed multiple experiments with an inclined plane starting at
different heights. From these heights we could determine the initial potential
energy of the ball, which was converted to kinetic energy by rolling down
the inclined plane. At the end of the inclined plane (not taking into account
the friction of the inclined plane), the initial velocity of the ball could thus
be determined. We then measured the distance in multiple experiments. By
transposing the rolling distance formula the rolling resistance coefficient can
be calculated.

cR =
1

2
· υ

2
0

g · d
(5.3)

where υ0 is the starting velocity, g the gravitational constant, and d the
total distance the ball traveled. The mean of the calculated coefficients is
used as the rolling resistance coefficient for the other calculations. In the
algorithm the position of the ball after the execution of an action is needed.
To calculate this, the formula is transposed to calculate the distance the ball
rolls after the execution of an action:

d =
υ20

2cR · g
(5.4)

where υ is the initial velocity of the ball. cR the rolling resistance coefficient
and g the gravitational constant. Figure 5.4 shows a resulting end position
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cloud of a hypothetical kick. The end points are calculated by drawing a
sample from both the angle and kick speed distribution and plugging these
values in equation 5.4. For detail, refer to section 5.5.3.

5.5.3 The algorithm

The whole simulation is divided into three steps: simulate the consequences,
evaluate the consequences and decide the best action.

Simulating the consequences

Each action is simulated a fixed number of times. The resulting ball position
of one simulation for an action is referred to as particle. The positions of
the particles are calculated according to the parameters of the action with
applied standard deviations as shown in figure 6.3. The algorithm checks
for possible collisions with the goal box and in case there are any the kick
distance gets shortened appropriately. Collisions with the obstacle model are
handled the same way.

Evaluation

Each particle is sorted in different categories based on where on the field it is,
e.g., inside the field, inside the own Goal, outside the field. If a particle lands
outside the field it is sorted in the category according where it went out,
e.g., left sideline or opponent ground line. This is repeated for every particle
of every Action that is defined. The algorithm then counts the number of
particles of each action that is either inside the field or inside the opponent
goal.

Decision

If an action has less than the defined threshold of particles either inside the
field or inside the opponent goal the action is discarded. For the remaining
actions the one with the most particles inside the opponent goal is calculated.
If there are two actions with the most particles inside the goal the best action
is determined by evaluating the particles of each actions with the potential
field. The action with the smaller sum is selected. If at least one particle of
an action is inside the own goal the action will not be chosen. If no action
has a particle inside the opponent goal the potential field is used to rank
the actions. In this case all particles from one action are evaluated by the
potential field and the mean of these values is calculated. The action with
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Figure 5.5: Three examples of kick simulations. Each possible kick direction
is simulated with 30 samples (different colors correspond to different kicks).
Left: the short and long kicks are shortened due to collision with an obstacle.
Middle: long kick is selected as the best action since it has the most samples
result in a goal. Right: the best action is sidekick to the right – the other
kicks are more likely to end up in a dangerous position for the own goal
according to the potential field.

the highest mean is selected and executed. If no action has enough good
particles, the best action is to turn towards the opponent goal.

5.5.4 Potential field

A potential field assigns a value to each position of the ball inside the field.
The values reflect the static strategy of the game and are used to compare
possible ball positions in terms of their strategic value. For instance, the
position a meter away in front of the opponent goal is obviously much better
than the one in front of the own goal. In our experiments we use the following
potential field:

P (x) = xT · νopp︸ ︷︷ ︸
linear slope

− N(x|µopp,Σopp)︸ ︷︷ ︸
opponent goal attractor

+N(x|µown,Σown)︸ ︷︷ ︸
own goal repulsor

, (5.5)

where N(·|µ,Σ) is the normal distribution with mean µ and covariance Σ.
It consists of three different parts: the linear slope points from the own goal
towards the opponent goal and is modeling the general direction of attack;
the exponential repulsor N(x|µown,Σown) prevents kicks towards the center
in front of own goal; and N(x|µopp,Σopp) creates an exponential attractor
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Figure 5.6: Strategic potential field evaluating ball positions. Own goal is
on the left (blue).

towards the opponent goal. The configuration used in our experiments is

νopp = (−1/xopp, 0)T (5.6)

with xopp = 4.5 being the x-position of the opponent goal and

µown = (−4.5, 0) µopp = (4.5, 0) (5.7)

Σown =

(
3.3752 0

0 1.22

)
Σopp =

(
2.252 0

0 1.22

)
(5.8)

for the repulsor and attractor respectively. All parameters are of unit m.
Figure 5.6 illustrates the resulting potential field. A more detailed description
of this simulation can be found in [10].



Chapter 6

Motion Control

The performance of a soccer robot is highly dependent on its motion ability.
Together with the ability to walk, the kicking motion is one of the most
important motions in a soccer game. However, at the current state the
most common approaches of implementing the kick are based on key frame
technique. Such solutions are inflexible and cost a lot of time to adjust robot’s
position. Moreover, they are hard to integrate into the general motion flow,
e. g., for the change between walk and kick the robot usually has to change
to a special stand position.

Fixed motions such as keyframe nets perform well in a very restricted way
and determinate environments. More flexible motions must be able to adapt
to different conditions. There are at least two specifications: Adaption to
control demands, e. g., required changes of speed and direction, omnidirec-
tional walk, and adaptation to the environment, e. g., different floors. The
adaptation of the kick according to the ball state and fluent change between
walk and kick are another example.

At the current state we have a stable version of an omnidirectional walk
control and a dynamic kick, both used in our gameplay. Along with further
improvements of the dynamic walk and kick motions our current research fo-
cuses in particular on integration of the motions, e. g., fluent change between
walk and kick.

Adaptation to changing conditions requires feedback from sensors. We
experiment with the different sensors of the NAO. Especially, adaptation to
the visual data, e. g., seen ball or optical flow, is investigated. Problems
arise from sensor noise and delays within the feedback loop. Within a cor-
related project we also investigate the paradigm of local control loops, e. g.,
we extended the Nao with additional sensors.
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6.1 Walk

The algorithm we use to accomplish a walking motion can be subdivided into
three components: the step planer, the preview controller and stabilization.

At first, the step planer determines the target position for the next step
considering the Walk-Request and various stability criteria. After that, a
sequence of desired ZMPs (zero moment points) is planned for each exe-
cution cycle of that step. This sequence of ZMPs is used by the preview
controller to compute the trajectory of the COM (center of mass) during the
execution of the step assuming a linear inverted pendulum model. While
the step is executed the foot’s 3D trajectory is calculated on demand and
combined with the corresponding COM pose to finally determine the target
joint configuration using inverse kinematics.

6.1.1 Step Planner

The step planer calculates the next 2D positions for the feet based on the
motion request.

The Motion Request contains the Walk-Request as an optional part. A
Walk-Request contains information about the destination of the walk and is
defined by a target pose (x, y, θ) and the frame of reference of the destination
(the left, the right foot or the hip). Therefore the Walk-Request is trans-
formed into a virtual origin of the supporting foot-to-be. Virtual means that
no physical counterpart exists. In this coordinate system the Walk-Request
is applied resulting in the virtual target origin for the moving foot. From
this virtual target origin the target pose for the step is determined.

Our walk supports two different types of steps which can be requested.
The normal walk step is interpolated linearly between start and target foot
position. The Step-Control step can be used to realize more complicated
trajectories, like arcs.

The requested steps are restricted due to anatomic constraints and in-
creasing the walk’s stability. A step is restricted elliptically in x-y-plane in
general. The normal step’s final dimensions are scaled by the cosinus of
the requested rotation. So if a huge rotation is requested the translation
will be small. In addition, the change in the step size is also restricted for
normal steps to increase stability. Therefore the robot won’t begin to walk
with the maximal possible step size using normal steps. After applying these
restrictions the step is finally added to the step buffer.

Independent of the requested steps the step planner might insert Zero-
Steps for increasing the stability of the walk. A Zero-Step is a step in which
no foot is moved.
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6.1.2 Preview Control

The Preview Controller calculates the trajectory for the COM based on
planed ZMPs. For estimating a stable trajectory for the COM we assume
a linear inverted pendulum model with constant height. In each planning
cycle of a step a target ZMP is added to the ZMP-buffer. The ZMP-buffer is
used by the preview controller to calculate the target position, velocity and
acceleration of the COM during a step. The following equation is used to
determine the control vector [15]:

u = − Kxxk︸ ︷︷ ︸
statefeedback

−KI

k∑
i=0

(pk − prefk )︸ ︷︷ ︸
accumulatedZMPerror

−
[
f1, f2, . . . , fN

]︸ ︷︷ ︸
preview gain


prefk+1

prefk+2
...

prefk+N


︸ ︷︷ ︸
futureZMP

(6.1)

Where xk is a vector describing the location, velocity and acceleration of
the COM at time k. pk is the ZMP and prefk the target ZMP at time k.
Kx, KI and f1, · · · , fN are the parameters of the preview controller and are
precalculated. The next target COM xk+1 can be calculated using a linear
motion model:

xk+1 = Axk + ub (6.2)

6.1.3 Stabilization

The simplified model can easily be affected by disturbances in the environ-
ment. Therefore a closed loop stabilization is required.

Different control techniques are used during step creation and execution
to accomplish a stable walk.

During step creation the target step is adapted by a P-D-Controller mech-
anism to compensate small errors in the COM’s position. Another mecha-
nism uses the average COM-Error. If the average COM-Error exceeds a
threshold an emergency stop is performed. This emergency stop is realized
by zero-steps. As long as the COM-Error doesn’t drop below a threshold the
robot won’t execute a step which is requested by a Walk-Request.

During the execution of a step three stabilization mechanisms are used.
At first the height of the hip and its rotation around the x axis are adapted to
compensate the moments appearing while a foot is lifted. A second stabilizer
tries to keep the upper body in an upright position the whole time. And a
third controller adapts the ankles according to the current orientation of the
robot’s body and its change in orientation.
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6.2 Energy Efficient Stand

During games we have to deal with two problems regarding the hardware
of the robots. The first problem is the increasing temperature of the joints,
which affects the stability of walking. The second problem is the overall
power consumption limiting the operational time. We observed that the
robots are standing a lot on strategic positions during the game causing high
energy consumption. The core of the problem seems to be that when going
to the stand pose the joints are never reached completely and so remain in
a state of permanent tension. In particular this can happen when the last
step before stand was not completed exactly and the feet are a bit shifted.
Therefore to address both problems we try to reduce the energy consumption
and temperature increase during standing.

After the robot reached the target standing pose the measured joint po-
sitions are used as new target joint angles to ensure that each joint really
reached the target position and thus relaxing the joints. Reducing the applied
stiffness on the motors will result in a reduction of the applied current and
so reduce temperature increase and the energy consumption. Additionaly we
try to use as less stiffness as possible while maintaining a posture close to
the target standing pose. To achieve that the stiffness is linearly interpolated
between 0.3 and 1 depending on the joint angle error for each joint.

The knee pitch and ankle pitch joints are the joints which have to carry
most of the load. It was observed that in some cases the applied current
can be reduced significantly if the target position of these joints is relaxed
by the minimal step size of the motors. Therefore an offset is added to the
joint positions. Every second the offset of the joint with the highest current
consumption is relaxed, i.e., increased (for knees) or decreased (for ankles),
by the minimal step size of the motors.

Both energy saving approaches may result in a drifting of center of mass.
So if the difference to the target center of mass becomes too large regard-
ing translation and rotation the offset are reset and the standing posture is
corrected again with full stiffness.



Chapter 7

Behavior

The Extensible Agent Behavior Specification Language — XABSL cf. [9] is
a behavior description language for autonomous agents based on hierarchi-
cal finite state machines. XABSL is originally developed since 2002 by the
German Team cf. [8]. Since then it turned out to be very successful and is
used by many teams within the RoboCup community. We use XABSL to
model the behavior of single robots and of the whole team in the Simulation
League 3D and also in the SPL.

Figure 7.1: (left) XabslEditor: On the left side, you see the source code
of a behavior option. On the right side the state machine of this option is
visualized as a graph (right). In the main frame the execution path is shown
as a tree; at the bottom, some monitored symbols can be seen, the developer
can decide which symbols should be monitored; On the left side, there is a
list of buffered frames, which is very useful to see how the decisions changed
in the past.

In order to be platform independent, we develop our tools in Java. In
particular we are working on a Java based development environment for
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XABSL, named XabslEditor. This tool consists of a full featured editor
with syntax highlighting, a graph viewer for visualization of behavior state
machines and an integrated compiler. Figure 7.1 (left) illustrates the XABSL
Editor with an open behavior file.

Another useful tool we are working on is the visualizer for the XABSL
execution tree, which allows monitoring the decisions made by the robot at
runtime. At the current state, this visualizer is part of our debugging and
monitoring tool RobotControl. Figure 7.1 (right) illustrates the execution
tree of the behavior shown within the visualizer.

7.1 Team Strategy

Our team strategy is based on the notion of the active and passive behavior.
Active behavior defines for each robot what is to do if the robot is at the
ball, while passive behavior describes what is to do if the particular robot is
not at the ball. A robot in the active state, i.e., handling the ball, is also
referred to as striker.

Essential part of the passive behavior are the home positions. These are
fixed positions assigned to each player to which the robot eventually returns
if it is in the passive state. This is important in order to keep players at
the strategically important positions. At the current point the assignment
of players to the passive positions is fixed based on the player number. The
start and kickoff positions which robot assume during the ready phase before
the game are chosen in the way to minimize the overlapping of the paths of
the robots and the distance to be walked. Figure 7.2 illustrates the differ-
ent formations - start positions (yellow), kickoff positions (blue) and home
positions (red) - as well as the player assignment.

The task of a robot in the active state is to handle the ball, i.e., approach it
and move it towards the opponent goal. We use a simulation based approach
to chose the best action/kick to perform as described in the Section 5.5. In
the ideal case there is exactly one player in active state (striker) at all times.
We use a team communication protocol to ensure the player with the best
chance to get the possession of the ball is in the active state. The details of
the negotiation are described in the Section 7.2.

The passive and active behaviors are the same for all field players differ-
ing only in individual home positions, while goalie has specialized behavior.
Please refer to the code release for the details of the particular XABSL be-
haviors for different states (active, passive, goalie) etc.
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Figure 7.2: Illustration of the different strategic player position: start po-
sitions (yellow), ready positions during opponent kickoff (blue), during own
kickoff (gray) and home positions (red). For players 1 and 2 all positions are
the same respectively. Player 3 is the only one with a different ready position
during own kickoff. Solid arrows illustrate the assignment of ready positions
to the players. Dashed arrows illustrate the transitions from passive kickoff
positions to the corresponding passive positions.

7.2 Role Change

The task of the role decision mechanism is to determine which of the players
should become striker. In general there should be only one robot which acts
as striker.

The goalie is excluded from the general role decision process in terms of
how he decides to become striker. His decision is based on how close the ball
is to the own goal - independent from other players. In case goalie decides
to be striker, all the other player become passive.

The decision process for every other robot, which role should be used,
runs every cognition cycle and is based on four data points.

1. the previous decision (wants to be striker and was striker)
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2. the state of the robot (active, fallen, penalized, ...)

3. time to the ball

4. player number

Therefore we communicate every ∼500ms the SPL standard message and
further following information:

� is penalized
states if the robot is penalized and by this is “inactive“

� is/was Striker
determines if the robot perceived himself as the striker

� time-to-ball
an estimation how fast the robot can approach the ball; for that the
robot takes into account his walking, turning and standup speed, if
there’s an obstacle between his position and, if the ball is moving,
whether the ball can be intercepted by the robot.

Every robot calculates the striker role decision for every team member (in-
cluding himself) based on the communicated information. With that we
should get a consistent distribution of roles throughout the team. The deci-
sion to become striker or not runs as follows:

1. all robots in an “unable to play“ state are ignored

� an “unplayable“ state is set, when the robot is fallen, penalized
or otherwise inactive

� a robot can otherwise be seen as inactive, if “we“ didn’t get any
message from the robot and therefore “we“ assume that the robot
is “DEAD“

2. robots which didn’t see the ball are ignored too

� if the robot was striker before, he gets a time bonus of one second
before he hasn’t seen the ball

3. for the remaining active robots which see the ball, the robot closest to
the ball communicates that he wants to be the striker

4. in the subsequent congnition cycle the robot which wants to be striker
is assigned a striker role
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Finally every robot should “know“ who should be striker and all others are
passive. This simple procedure assures that only the robot closest to the
ball or the goalie approaches the ball. To prevent unwanted behavior of the
striker (oscillation, ball losses), the striker receives two time bonuses. On
the one hand the striker gets a “loose ball“ bonus, this means if the striker
looses the ball (doesn’t see it anymore) he has more time to recover the ball
than his teammates. On the other hand the striker gets a “closer to the ball“
bonus to prevent oscillation between two (or more) robots, who are roughly
equal distance to the ball.

7.3 Voronoi-Based Strategic Positioning

Strategic positioning is a decisive part of the team play within a soccer game.
In most solutions the positioning techniques are treated as a constituent of
a complete team play strategy.

In our approach, based on the conditions of a specific strategy, the field is
subdivided into regions by a Voronoi tessellation and each region is assigned a
weight. Those weights influence the calculation of the optimal robot position
as well as the path. A team play strategy can be expressed by the choice of
the tessellation as well as the choice of the weights. This provides a powerful
abstraction layer simplifying the design of the actual play strategy.

The Voronoi tessellation is used to separate the field in regions and is
defined by a set of points, called Voronoi sites, distributed over the field.
The area around the robot is divided in higher-resolved regions. With this
we can easily construct very complex tessellations based on the conditions
given by our strategy. Apart from a set of regions, we also get a graph, called
Delaunay graph, which is defined by the cells as nodes and the neighborhood
as edges. This graph gives us a possibility for efficient search within the
tessellation.

Scalar fields are used to formulate strategies and to express it in terms
of weights of the VBSM. Thereby, the target position is modeled as the
global minimum of a scalar field. The striker, goal posts as well as the line
between ball and opponent goal should be avoided and therefore are modeled
as maxima of the scalar field. In a different way from the target position, the
objects should have a limited range of influence. For each Voronoi cell we
define the weight as a sum of the scalar fields at the Voronoi site p defining
the cell.

The whole situation map is defined by this Voronoi tessellation and pos-
itive weights assigned to each cell. Thus, the map consists of the spatial
separation of the field in regions and a graph structure over the defining
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Figure 7.3: An example situation: (left) initial positions of the supporter
(center) and the attacker (closer to the ball); the center (black diamond) of
the red dashed rectangle illustrates the target position for the supporter; the
scalar field encoding the strategy is depicted by the intensity of the yellow
glow (the global minimum is at the diamond); (right) the Voronoi tessellation
with the weights of the regions depicted by the intensity of the yellow color;
path calculated by the A* algorithm.

nodes. Basically, we can consider this map as a weighted undirected graph
where the weights of the nodes are given directly by the definition and the
weights of the edges are determined as a combination of the metric distance
between the defining points and the weights of the nodes.

To solve the positioning task the A* algorithm is employed to find the
shortest path. Thereby the start node is the region containing the position
of the robot and the target node defined by the minimal weight.

Note that the geometry of the tessellation changes over time depending
on the position of the player. The path calculated in one frame gives only a
rough direction for the movement. The resulting path which emerges through
the robot following the given directions will be much smoother as the higher
resolution around the robot moves with it. The Figure 7.3 (right) illustrates
the resulting tessellation. [7]



Bibliography

[1] Ralf Berger. Die Doppelpass-Architektur. Verhaltenssteuerung au-
tonomer Agenten in dynamischen Umgebungen (in German). Diploma
thesis, Humboldt-Universität zu Berlin, Institut für Informatik, 2006.
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