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Abstract— In this paper we describe a new localization-method.
It is a bearing-only approach which only uses horizontal bearings
to landmarks and incorporates odometry. The approach is per-
fectly suited for mobile robots equipped with a camera because
bearings can be extracted from images with high accuracy. The
method itself does not need any internal representation of the
robot’s position which is updated by alternating motion and
sensor updates. The position is calculated directly using a short
term memory of the observations. Our approach is also able
to generate template positions for Monte-Carlo localization. The
distribution of the template positions reflects the accuracy of the
position calculation which depends on the configuration of the
selected landmarks. In this paper we give a detailed description
of the method and show the results of experiments conducted on
a Sony Aibo robot demonstrating the precision.

I. INTRODUCTION

Localization is one of the most important challenges for
a mobile robot. There are a lot of researchers developing
new methods each year. In the last years the Monte-Carlo
Localization has been the standard approach to the localization
problem. A lot of improvements have been suggested to
overcome limitations in the processing power and to address
the limited angle of view of robots that are not equipped with
omni-vision.

There are a lot of suggested improvements to the sen-
sor model. Sensor-resetting reseeds new position templates
obtained from observations [5] and there are improvements
that build a short-time history of observations to create more
accurate position templates [9]. Other approaches try to incor-
porate negative information [3]. A lot of improvements has
also been suggested for the motion model - for example using
the detection of collisions.

This work was motivated by the experiences we collected
with the localization method that we use in RoboCup for our
Aibo robots. We use a standard Monte-Carlo Localization as
described in [2], [1], [10]. This method performs very well
on robots equipped with infra-red distance sensors or laser
range finders. Things become harder when the main sensor
is a camera. Distance measurements can be inaccurate due
to partial occlusions of landmarks. Additionally size-based
distance measurements have a large error when the objects
are too far away or the resolution of the camera is low.

In this paper we provide a bearing-only method for localiza-
tion that incorporates odometry and can be used as a template
generator for Monte-Carlo Localization. Section II describes

the method in detail. Section III describes the experiments we
performed with our Aibo robots.

II. BEARING-ONLY LOCALIZATION USING ODOMETRY

In this section we show a method that allows a robot to
localize based on two inputs. The first input are observations.
The vector
Oé[l
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n

contains the measured bearings to the landmarks Iy, o, ..., .
These angles were measured at different times t1,to, ..., ty.
The second input is the knowledge about the motion of the
robot. The vector
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contains the robot’s odometry at times t1,ta, ..., .

A robot can obtain these vectors @ and @ by storing its
observations and the according odometry in a buffer. Figure 1
shows a visualization of such a buffer.

In this section we define a function F(z,y,d, ) which
describes the likelihood for the robot of being at position
(x,y) on the field. This function can be used to calculate a
robot position (the maximum of the function) or to generate
templates for Monte-Carlo Localization.

A. Localization with three simultaneously seen horizontal
bearings

In this subsection we show two methods to determine the
position of the robot when the robot is not moving. The first
one uses well-known simple geometry, the second one is a
constraint-based approach.

1) Using simple geometry: When a robot perceives three
landmarks without moving between the observations, the cal-
culation of the position is straightforward. With the known
position of the landmarks a circle can be constructed for each
pair of bearings. The radius of the circle is determined by
the difference of the angles and the distance between the
landmarks. The intersection point of the circles is the only
possible position for the robot. Figure 2 shows an example.
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Fig. 1.  Odometry and horizontal bearings. Top: Five images with six

horizontal bearings (1: right goal post, 2: left goal post, 3 and 4: center
landmarks, 5 and 6 goal posts) Bottom: Gray arrows show the robot’s
odometry at different times, bold arrows show the odometry associated with
the horizontal bearings.

Fig. 2. Determining the position of the robot by three horizontal bearings
to known landmarks. Black lines: horizontal bearings. Large circles: circles
given by two bearings and two landmarks.

2) Pose estimation using angular constraints: When the
position is determined by intersecting circles, there is nothing
known about the influence of errors in the measurement of the
bearings. This influence can be determined using a constraint-
based approach. A single observation of a landmark [ at a
certain relative angle constrains the angle 1J; the robot can
have at a certain position (z,y) on the field. This angle is
given by

ﬁl(x7y7al7l'l,yl) — arctan (yl _y) .
-

where (x;,y;) is the position of the landmark on the field and
oy is the relative angle to the landmark. Figure 3 a) shows this
function. When two bearings to two landmarks are given, the
function

Dl1>l2(x’y) = (19l1 (.%,y) B ﬁlz(x7y))2

describes the likelihood for being at position (z,y). Fig-
ures 3 b,c,d) show function D for several examples. The shape
of the function represents how good a certain pair of landmarks
is suited to constrain the position on the field. For example a
plateau in this function (like in figure 3 b) means that a small
error in an observation leads to a large error in the resulting
position.

The function Dy, ;,(z,y) introduced above describes for
each position (z,y) how good the angles ¥J;, and 1;, obtained
from two different horizontal bearings match. To use more than
two observations «y, , o, ..., &, , we can calculate the average
angle of all resulting ¥;,,9,, ..., ¥;, for each position (z,y)
using this formula

; sin(d, (2, 9))
3 cos(t, (2, 9)

i=1

Yaverage (T, y) = arctan

Figure 4 a) shows function ¥;(x,y) for three different land-
marks and the resulting average angle. Using Yqyerage (z,9)
we can define the function

n

G(z,y) = Z (Yaverage(®,y) — 1, (=, y))2

i=1
which describes how similar the angles 1¥; are. This function
has its maximum at the position (x,y) that best fits with
all observations «y,,ay,,...,aq,. Furthermore the function
provides an estimation of the position error for known errors
in the observation. Figure 4 b) shows this function for three
observations.

B. Incorporating odometry

To incorporate odometry we define a function
v (2, Y, 1, Aodometry; s 1, Y1) Which determines the angle of
the robot at position (x, y) when the landmark [ was seen at
angle «; and the robot moved Aggometry(Az, Ay, Ag) since
the observation. Figure 5a) illustrates these parameters and the
resulting angle v;. To determine v; we define a triangle with
its corners at the position (x;,y;) of the landmark [ (angle 3),
at the position (x,y) (angle ) and at the position (zg,yo)
where the observation was taken (angle J). Figure 5b) shows
this triangle. Note that in this triangle (z;,y;) and (z,y) are
fixed. The position of (xg,yo) can be calculated using the
angle w from (z,y) to (x;,;) and the distance A, the robot
walked:

x4 cos(w+7) - Ay
y+sin(w+7y) - Ay

rog =

ICAR 2007
The 13th International Conference on Advanced Robotics August 21-24, 2007, Jeju, Korea

22



o
R
o

s S S
N~

NNNNNSNINSNSN——

—
~————
—~——

NN -

NS S SS
~————

\.

N—.

N\
A\

NANNNNNINSNSNN~

NNNSN————
NNNSN~—————
NNNSNSN—————
NNNSNSN————
AR D e e —
NANNNNNSNSS—————
NANNNNNSNSNSN———
NSNS ———
NN
NN NSNS

NN\~
NN~

|

—

NN S ————
NN SN SN ————
NSNS SNS————

S
S S S S S S
S S S S S S
S S S S
S S S S

S S S

R S OIS
o
N~
SN~————

Fig. 3. Angular constraints for location estimation. a) The red lines show
the angle ;, on the field for each position. This angle results from a given
horizontal bearing to the left goal post. b) The green lines show the angle ¥;,,
on the field that results from a bearing to the right goal post. The gray-scale
grid in the background shows the square of the difference (¥;, — 1912)2
between the angles. This function has a peak near the positions that are
covered by the circle obtained using simple geometry. c¢) The difference
(9, — 1913)2 between the angles resulting from the bearings to the left goal
post and the right center flag. d) The difference (J;, — 1913)2 between the
angles resulting from the bearings to the right goal post and the right center
flag.
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Fig. 4. Similarity of angles. a) The thin lines show the angles ¥;(z,y)
for three different observations. The bold line shows the average angle. The
robot’s position is constrained to the positions where the angles are similar. b)
Function G(z,y) displayed as height map. White: small difference between
the angles, black: large difference between the angles. The red circles are
obtained from the method using simple geometry described above.

where ~ follows using sine rule:

T—0—0
A Ay - si
= T — o — arctan (Az> — arcsin <d;lm(6)> A

With the known position (g, yo) follows

")/:

Ul(x7 Y, g, A(:adormetry“wla yl) - 19<1'07 yO) + A¢

When the robot is at position (z,y), has seen the landmark !
at angle oy some time ago, and has moved by A,gmeiry, since
that observation, the function v; gives the angle the robot must
have. Similar to the function G from section II-A we define a
function

n

F(Iv y,a, ﬁ) = Z (Uave'raga(xv y) — U, (Iv y))2

i=1
which describes the likelihood of the robot for being at
position (z,y). This function can incorporate an arbitrary
number of observations from the past and does not need
any internal representation of the position that is updated by
alternating sensor and motion updates. The selected sensor
information & and the according motion information @ are
processed at once.
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Fig. 5. Geometrical considerations to determine the angle v; of the robot.

C. Calculating the robot pose

The maximum of function F' given in the last section is the
position of the robot. The rotation of the robot can immediately
be calculated using vgyerage OF the angle vy, that is defined
by the last observation. When a fast and rough estimation of
the robot pose is wanted, the maximum can be determined
by an iteration through the domain of the function. When
a more accurate estimation is wanted it can be obtained by
means of standard methods as Gradient Descent with only a
few iterations. Note that such methods usually find only local
maxima of the function.

D. Generating templates for Monte-Carlo localization

Often there is more information than the horizontal bearings
to unique landmarks to determine the pose of the robot.
Especially when there is ambiguous information like distances
to walls or field lines a localization method that is able to track
multiple hypotheses might be preferred. In such a case the
function F' described in section II-B can be used to create
template poses for sensor resetting. Which is in particular
useful when only a small number of particles can be used
due to computational limitations. To obtain a fixed number of
samples you can normalize F' such that all values are between

d1:
0 an 1

Fr=—"
(1+ F?)

Fig. 6. The Function F'(z,y): white - high likelihood, black - low likelihood,
Arrows: position templates that can be used for sensor resetting in Monte-
Carlo localization - note that usually only a small number of these templates
will be used. Small circles: the landmarks that were used for position
calculation. Large circle: the robot pose (known from the simulation). Path:
the way the robot walked.

and create a template pose at each position (z,y) with
random() < F'(x,y)"™. Where n is a parameter to adjust
how much the sample poses can deviate from the maximum.
Figure 6 shows templates obtained from function F'.

III. EXPERIMENTAL RESULTS

In this section we describe the setup and the results of the
experiments. We used an Aibo ERS-7 robot built by Sony
for our experiments. This robot has a pan-tilt camera with
a resolution of 208x160 pixels. All tests were done on a
RoboCup soccer field (size: 6m x 4m) where the goal posts of
the two goals and two beacons at the half way line can be used
as landmarks. The horizontal bearings to the landmarks needed
for our location approach were extracted from images and joint
sensor data by the method given in [4]. One experiment shows
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Fig. 7. a) Circle: current relative robot position. Arrows: history of odometry.
Thin lines: bearings to right and left goal post. Bold lines: bearings used
for localization. b) Background: function F'(z,y) when the left goal post
was seen. Bold line: the path the robot walked. Thin line: the result of the
localization (since possible). Circles: the goal posts used for localization.

that the method equips the robot with something like stereo
vision. In another experiment we analyzed the performance of
our system.

A. Localizing using only two landmarks

In this experiment the robot uses bearings to only two
landmarks, which is not enough information to localize when
odometry is not incorporated. We let the robot walk over
a RoboCup field from one side line to the other, observing
one of the goals. During this walk, it first observes just the
right goal post, then both posts, and in the end only the left
post. As soon as the left goal post is seen, there is enough
information to localize using the first and the last observation
of both goal posts. Figure 7 a) shows a visualization of the
robot’s motion and its observations. Figure 7 b) show a plot of
function F'(x,y) at the first time the left goal post is seen and
the resulting path for the rest of the run. With this experiment
we were able to show that incorporating odometry is a benefit
for bearing-only localization. Only two beacons are sufficient
to determine the position of the robot when the robot changes
its observing position.

B. Generating template poses for monte-carlo localization

We developed the bearing-only localization approach as a
replacement of the distance-based sample template generation
that we use for our Monte-Carlo self-localization [6], [8], [7].
The old method was not usable any longer as with the 2007
rule change in the RoboCup Sony Four Legged league two
more beacons were removed and thus there are less beacons
and the beacons have a higher average distance to the robots.

Thus we added the method described in section II-B as a
sample template generator in a way described in section II-D.
The particle filter uses 200 particles.

To measure the quality of our improvements we steered
a real robot via remote control over the soccer field in our
lab performing an s-like shape on the field. The head of the
robot performed the typical Aibo scan motion which looks
around searching for the ball and the landmarks. During this
process log data was recorded containing camera images, head
joint values, odometry data, and ground truth robot positions
obtained by a ceiling mounted camera. Such log-files can be
played back off-line to feed our algorithms with data. We used
the recorded log data to compare different parameterizations
of the approach.

We compared three localization methods:

1) The implementation of Monte-Carlo localization we use

in RoboCup (not using sample templates)

2) The method described in section II-C using the maxi-

mum of F(z,y)
3) Monte-Carlo localization using sample templates as de-
scribed in section II-D.

To compare the ground truth and the determined robot
position we calculated the average distance for the whole
run in the log-file for each of the methods. The result was
that the relative error (compared to field size) of the plain
Monte-Carlo method was 9.13%, the error of the maximum-
method 5.13%, and the error of the Monte-Carlo method using
sample templates 3,18% to 3,74% (depending on the number
of samples).

Figure 8 shows a visualization of the path the robot walked
and the pathes obtained by our methods. The influence of the
number of samples used for reseeding is given in table 9.

The overall result of the experiments is that without template
generation there were random jumps and a large deviation
from the ground truth robot pose. With sample template gen-
eration (using one sample per frame) the resulting trajectories
were smoother and closer to the ground truth.

IV. CONCLUSION

In this paper we presented an approach for bearing-only
self-localization incorporating odometry. It does not depend
on distance measurements which often are inaccurate when
obtained by the size of far-distant landmarks. Our approach
works on a buffer of observations and the history of the robot’s
odometry. We can estimate the position of the robot directly
by this data without alternating sensor and motion updates.

However, we showed that our method also provides good
positions for sensor resetting in the well known Monte-Carlo

ICAR 2007
The 13th International Conference on Advanced Robotics August 21-24, 2007, Jeju, Korea

25



a) | ; |
b) i
c) i
d) [~

Fig. 8. Comparing ground truth robot position and localization result. Blue
line: ground truth robot position. Red line: result of self localization. a)
Monte-Carlo localization - no sample templates used. b) Our new approach
- maximum of F(x,y). c,d) Monte-Carlo localization using sample templates
generated by our approach.

num. of r 0 1 2 10 20 plain
deviation in cm 54.8+21.6] 21.7413.1| 19.1+13.0| 19.5+12.6| 22.4417.0| 30,8+20,7,
deviation relative to field length 9,13% 3,63% 3,18% 3,25%) 3,74%)| 5,13%)

Fig. 9. Results of Localization tests. In our experiment the position obtained
by the approach introduced in this paper was compared with the one obtained
by the ceiling camera. The table shows the average distance between the
two positions for the whole run repeated six times. To show how reseeding
influences the localization quality we conducted the experiment with different
re-sampling rates (top row). The table shows that even a single reseeded
particle in each frame improves self-localization drastically. Adding more
samples has almost no effect. The last row gives the results for the plain
maximum-method (no MCL).

localization. Tests in simulation and on a real Aibo robot with
ground truth by a ceiling camera showed the robustness of
our approach. Further experiments have to show whether the
localization method can cope with larger errors in odometry
caused by strong influence of opponents in RoboCup games.

The method does not need an internal representation of
the position estimate which is updated by alternating sensor
and motion updates. The observation and motion information
out of the robot’s sensor history is processed directly. A big
advantage is that no wrong model from the past can disturb
the current pose estimation. However, false observations lead
to a false position. Thus the observations to be used have to
be selected very carefully. Especially the perceptions should
be designed in a way that false positives are excluded.
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