
Constraint Based World Modeling in Mobile Robotics

Daniel Göhring, Heinrich Mellmann and Hans-Dieter Burkhard

Department of Computer Science
Artificial Intelligence Laboratory
Humboldt-Universität zu Berlin

10099 Berlin, Germany
{goehring,mellmann,hdb}@informatik.hu-berlin.de

Abstract— In this paper we present a novel approach using
constraint based techniques for world modeling, i.e. self local-
ization and object modeling. Within the last years, we have
seen a reduction of landmarks such as beacons or colored
goals within the RoboCup domain. Using other features as
line information becomes more important. Using such sensor
data is tricky, especially when the resulting position belief is
stretched over a larger area. Constraints can overcome this
limitations, as they have several advantages: they can represent
large distributions and are easy to store and to communicate
to other robots. Propagation of several constraints can be
computationally cheap. Even high dimensional belief functions
can be used. We will describe a sample implementation and
show experimental results.

I. INTRODUCTION

Self localization and object tracking is crucial for a mobile
robot. Especially when sensing capabilities are limited, a
short term memory about the surrounding is required. Thus
modeling techniques have widely been investigated in the
past. Common approaches use Bayesian algorithms [4] as
Kalman [6] or particle filters [2]. Under some circumstances,
when sensor data is sparse and computational power is
limited, those approaches can show disadvantages. Complex
belief functions are hard to represent for Kalman filters which
use Gaussians; particle filters do not have this limitation but
need a high number for approximating the belief, resulting in
high computational needs which often cannot be satisfied. We
tackle this problem by using constraints for sensor data and
belief representation. Constraint based modeling approaches
have been proposed for localization in [10], or for SLAM
map building in [8]. A localization method using ultrasonic
sensors combined with bounded-error state estimation was
introduced for a small truck or vehicle in [7], [9] where
interval mathematics described in [5] was applied.

Constraint based approaches have several advantages: a)
constraints are easy to create and to store. b) they have a high
representational power, c) combining different constraints is
computationally cheap. In this paper we discuss constraint
propagation methods for solving navigation problems. The
main difference to classical propagation is due to the fact
that navigation tasks do always have a solution in reality.

A. Motivation
In many domains landmarks are very sparsely arranged.

In RoboCup, landmarks like beacons have been being elim-

inated gradually during the last years. Other sensor data like
field line information has to be used for self localization.
We found out that seeing one field line results in a complex
belief function which is hard to represent by a Gaussian or
by a small set of samples as in Monte-Carlo approaches.
Therefore we developed this constraint based representation
method.

B. Outline

We will show how a constraint based localization can be
implemented within the RoboCup Standard Platform League
(SPL). Furthermore we will compare the constraint based
approach to a Monte-Carlo Particle Filter. We will use real
robot sensor data and will discuss thereby how noisy and
inconsistent sensor data can be considered for constraint
localization.

II. PERCEPTUAL CONSTRAINTS

A constraint C is defined over a set of variables
v(1), v(2), ..., v(k). It defines the values those variables can
take:

C ⊆ Dom(v(1))× ...×Dom(v(k))

We start with an example from the SPL where the camera
image of a robot shows a goal in front and the ball before
the white line of the penalty area (Figure 1). It is not too
difficult for a human interpreter to give an estimate for the
position (xB , yB) of the ball and the position (xR, yR) of
the observing robot. Humans can do that, regarding relations
between objects, like the estimated distance dBR between the
robot and the ball, and by their knowledge about the world,
like the positions of the goalposts and of the penalty line.

The program of the robot can use the related features
using image processing. The distance dBR can be calculated
from the size of the ball in the image, or from the angle
of the camera. The distance dBL between the ball and the
penalty line can be calculated, too. Other values are known
parameters of the environment: (xGl, yGl), (xGr, yGr) are the
coordinates of the goalposts, and the penalty line is given
as the set of points {(x, bPL)| − aPL ≤ x ≤ aPL}. The
coordinate system has its origins at the center point, the y-
axis points to the observed goal.

The relations between the objects can be described by
constraints. The following four constraints are obvious by

Fig. 1. Image from RoboCup (Standard Platform League): A robot is
seeing a goal and the ball in front of a penalty line. The right picture shows
the resulting robot positions represented by the periphery circle according to
C1, and the line of the Ball-Line-Constraint C2. In collaborative navigation,
the robot seen in the image could provide further constraints.

looking to the image, and they can be determined by the
program of the observing robot:
C1: The view angle γ between the goalposts (the dis-

tance between them in the image) defines a circle
(periphery circle), which contains the goal posts
coordinates (xGl, yGl), (xGr, yGr) and the coordi-
nates (xR, yR) of the robot:

{(xR, yR)|atan
yGl − yR
xGl − xR

− atan
yGr − yR
xGr − xR

= γ}

C2: The ball lies in the distance dBL before the penalty
line. Thus, the ball position must be from the set

{(xB , yB)|xB ∈ [−aPL, aPL], yB = bPL − dBL}

C3: The distance dBR between the robot and the ball
defines a circle such that the robot is on that circle
around the ball:

{(xR, yR, xB , yB)|(xB−xR)2+(yB−yR)2 = d2BR}

C4: The observer, the ball and the left goal post are on
a line:

{(xR, yR, xB , yB)|
xR − xB
yR − yB

=
xB − xGl

yB − yGl
}

The points satisfying the constraints by C1 (for the robot)
and by C2 (for the ball) can be visualized immediately on
the playground as in Figure 1.

Fig. 2. Left: The picture shows the Constraint C2 for the ball, some of
the circles according to constraint C5, some of the lines according to C4,
and the resulting two lines for C6 (bold black lines). Right: Constraints
according to C7: The position of the robot is one of the four intersection
points between the periphery circle (C1) and the lines according to C6.

The constraint by C3 does not give any restriction to the
position of the ball. The ball may be at any position on the

playground, and then the robot has a position somewhere
on the circle around the ball. Or vice versa for reasons of
symmetry: The robot is on any position of the playground,
and the ball around him on a circle. In fact, we have four
variables which are restricted by C3 to a subset of a four
dimensional space. The same applies to constraint C4.

The solution (i.e. the positions) must satisfy all four
constraints. We can consider all constraints in the four
dimensional space of the variables (xB , yB , xR, yR) such
that each constraint defines a subset of this space. Then we
get the following constraints:

C1 = {(xR, yR)|atan
yGl − yR
xGl − xR

− atan
yGr − yR
xGr − xR

= γ}

C2 = {(xB , yB)|(xB ∈ [−aPL, aPL], yB = bPL − dBL}
C3 = {(xR, yR, . . .)|(xB − xR)2 + (yB − yR)2 = d2BR}

C4 = {(xR, yR, xB , yB)|
xR − xB
yR − yB

=
xB − xGl

yB − yGl
}

Thus the possible solutions (as far as determined by C1

to C4) are given by the intersection
⋂

1,...,4 Ci. According
to this fact, we can consider more constraints C5, . . . , Cn

as far as they do not change this intersection, i.e. as far as⋂
1,...,n Ci =

⋂
1,...,4 Ci . Especially, we can combine some

of the given constraints.
By combining C2 and C3 we get the constraint C5 =

C2 ∩C3 where the ball position is restricted to any position
on the penalty line, and the player is located on a circle
around the ball. Then, by combining C4 and C5 we get the
constraint C6 = C4 ∩C5 which restricts the positions of the
robot to the two lines shown in Figure 2 (left).

Now intersecting C1 and C6 we get the constraint C7

with four intersection points as shown in Figure 2 (right).
According to the original constraints C1 to C4, these four
points are determined as possible positions of the robot. The
corresponding ball positions are then given by C2 and C4.

To find the real positions, we would need additional
constraints from the image, e.g. that the ball lies between
the robot and the goal (which removes one of the lines of
C6), and that the robot is located on the left site of the field
(by exploiting perspective).

III. FORMAL DEFINITIONS OF CONSTRAINTS

We define all constraints over the set of all variables
v(1), v(2), ..., v(k) (even if some of the variables are not af-
fected by a constraint). The domain of a variable v is denoted
by Dom(v), and the whole universe under consideration is
given by

U = Dom(v(1))× · · · ×Dom(v(k))

For this paper, we will consider all domains Dom(v) as
(may be infinite) intervals of real numbers, i.e. U ⊆ Rk.

Definition 3.1: (Constraints)
1) A constraint C over v(1), ..., v(k) is a subset C ⊆ U .
2) An assignment β of values to the variables

v(1), ..., v(k), i.e. β ∈ U , is a solution of C iff β ∈ C.
Definition 3.2: (Constraint Sets)

1) A constraint set C over v(1), ..., v(k) is a finite set of
constraints over those variables: C = {C1, ..., Cn}.

2) An assignment β ∈ U is a solution of C if β is a
solution of all C ∈ C, i.e. if β ∈

⋂
C.

3) A constraint set C is inconsistent if there is no solution,
i.e. if

⋂
C is empty.

The problem of finding solutions is usually denoted as
solving a constraint satisfaction problem (CSP) which is
given by a constraint set C. By our definition, a solution
is a point of the universe U , i.e. an assignment of values to
all variables. For navigation problems it might be possible
that only some variables are of interest. This would be the
case if we were interested only in the position of the robot in
our example above. Nevertheless we had to solve the whole
problem to find a solution.

In the case of robot navigation, there is always a unique
solution of the problem in reality (the positions in the real
scene). This has an impact on the interpretation of solutions
and inconsistencies of the constraint system (cf. Section IV-
A).

The constraints are models of relations (restrictions) be-
tween objects in the scene. The information can be derived
from sensory data, from communication with other robots,
and from knowledge about the world – as in the example
from above. Since information may be noisy, the constraints
might not be as strict as in the introductory example from
Section II. Instead of a circle we get an annulus for the
positions of the robot around the ball according to C3 in the
example. In general, a constraint may concern a subspace
of any dimension (e.g. the whole penalty area, the possible
positions of an occluded object, etc.). Moreover, constraints
need not to be connected: if there are indistinguishable
landmarks, then the distance to such landmarks defines a
constraint consisting of several circles. Further constraints
are given by velocities: changes of locations are restricted
by the direction and speed of objects.

IV. ALGORITHMS

In principle, many of the problems can be solved by
grid based techniques. For each grid cell we can test if
constraints are satisfied. This corresponds to some of the
known Bayesian techniques including particle filters.

Another alternative are techniques from constraint propa-
gation. We can successively restrict the domains of variables
by combining constraints. We will discuss constraint prop-
agation in the following subsection, later we will present
experimental results for this approach.

A. Constraint Propagation

Known techniques (cf. e.g. [1] [3]) for constraint problems
produce successively reduced sets leading to a sequence of
decreasing restrictions

U = D0 ⊇ D1 ⊇ D2,⊇ . . .

Restrictions for numerical constraints are often considered
in the form of k-dimensional intervals I = [a, b] := {x|a ≤
x ≤ b} where a, b ∈ U and the ≤-relation is defined

a) b)

x

y D1
D2

C2
C1

Ix(D1 C2) Ix(D2 C1)

I y(
D

1

C

2)
I y(

D
2

C

1)

x

y

Ix(D C)

I y(
D

C
) D

C

Fig. 3. Constraint propagation with intervals: a) Two constraints consisting
of two boxes each C = C1∪C2 and D = D1∪D2 are intersected with each
other, resulting constraints depicted as bold red squares. b) a rectangular
constraint D and a circular constraint C resulting in a constraint consisting
of two rectangular areas. Intervals of Projection w.r.t. C∩D are illustrated.

componentwise. The set of all intervals in U is denoted by
I. A basic scheme for constraint propagation with
• A constraint set C = {C1, ..., Cn} over variables
v(1), ..., v(k) with domain U = Dom(v(1)) × ... ×
Dom(v(k)).

• A selection function c : N → C which selects a
constraint C for processing in each step i.

• A propagation function d : 2U ×C → 2U for constraint
propagation which is monotonously decreasing in the
first argument: d(D,C) ⊆ D.

• A stop function t : N→ {true, false}.
works as follows:

Definition 4.1: (Basic Scheme for Constraint Propagation,
BSCP)
• Step(0) Initialization: D0 := U , i := 1
• Step(i) Propagation: Di := d(Di−1, c(i)).
• If t(i) = true: Stop.
• Otherwise i := i+ 1, continue with Step(i).

We call any algorithm which is defined according to this
scheme a BSCP-algorithm.
The restrictions are used to shrink the search space for
possible solutions. If the shrinkage is too strong, possible
solutions may be lost. For that, backtracking is allowed in
related algorithms.

Definition 4.2: (Locally consistent propagation function)
1) A restriction D is called locally consistent w.r.t.

a constraint C if ∀d = [d1, ..., dk] ∈ D ∀i =
[1, ..., k]∃d′ = [d′1, ..., d

′
k] ∈ D ∩ C : di = d′i i.e.

if each value of a variable of an assignment from D
can be completed to an assignment in D which satisfies
C.

2) A propagation function d : 2U × C → 2U is locally
consistent if it holds for all D, C: d(D,C) is locally
consistent for C.

3) The maximal locally consistent propagation function
dmaxlc : 2

U ×C → 2U is defined by dmaxlc(D,C) :=
Max{d(D,C)|d is locally consistent}.

Since the search for solutions is easier in a more restricted
search space (as provided by smaller restrictions Di), con-
straint propagation is often performed not with dmaxlc, but

with more restrictive ones. Backtracking to other restrictions
is used if no solution is found.

For localization tasks, the situations is different: we want
to have an overview about all possible poses. Furthermore,
if a classical constraint problem is inconsistent, then the
problem has no solution. As already stated, for localization
problems always exists a solution in reality (the real poses
of the objects under consideration) so we must be careful
not to loose solutions.

Definition 4.3: (Conservative propagation function) A
propagation function d : 2U×C → 2U is called conservative
if D ∩ C ⊆ d(D,C) for all D and C.
Note that the maximal locally consistent restriction function
dmaxlc is conservative. We have:

Proposition 4.1: Let the propagation function d be con-
servative.

1) Then it holds for all restrictions Di :
⋂
C ⊆ Di.

2) If any restriction Di is empty, then there exists no
solution, i.e.

⋂
C = ∅.

If no solution can be found, then the constraint set is
inconsistent. There exist different strategies to deal with that:

• enlargement of some constraints from C,
• usage of only some constraints from C,
• computation of the best fitting hypothesis according to
C.

As already mentioned above, n-dimensional intervals are
often used for the restrictions D, since the computations are
much easier. Constraints are intersected with intervals, and
the smallest bounding interval can be used as a conservative
result. Examples are given in Fig. 3.

While local consistency is the traditional approach (to
find only some solutions), the approach with conservative
intervals is more suited for localization tasks because it can
be modified w.r.t. enlarging constraints during propagation
for preventing from inconsistency.

Now we want to present a constraint propagation scheme.
The stop condition compares the progress after processing
each constraint once.

Input: constraint set C = {C1, ..., Cn} with variables
V = {v1, ..., vk} over domain U and a time
bound T

Data: D ← U , s← 1, Dold ← ∅
Result: minimal conservative k-dimensional interval D

while s < T & D 6= Dold do1

Dold ← D;2

foreach C ∈ C do3

foreach v ∈ V do4

D(v)← Iv(D ∩ C);5

end6

D ← D(v1)× · · · ×D(vn);7

end8

s← s+ 1;9

end10
Algorithm 1: Constraint Propagation with Minimal Con-
servative Intervals, MCI-algorithm

Looking closer to the possible intersections of constraints
(e.g. to the intersection of two circular rings or to the
intersection of a circular ring with an rectangle like in Fig.
3a), the sets D ∩C might be better approximated by sets of
intervals instead of a single interval (see Fig. 3 b)). Thus,
the algorithm was extended for implementation this way:
The input and the output for each step are sets of intervals,
and all input intervals are processed in parallel. For such
purposes the propagation function d of the BSCP could be
defined over sets as well. As in other constraint propagation
algorithms, it might lead to better propagation results if we
split a given interval to a union of smaller intervals. In many
cases, when using more constraints, the restrictions end up
with only one of the related intervals anyway.

a) Using Odometry data.: When the robot moves, in
self-localization it shifts the constraint boundaries into to
movement direction. The odometry noise results in an en-
largement of the constraint borders consider slippery ground,
collisions, and/or walking noise. The appropriate constraint
enlargement has to be found experimentally.

B. Inconsistency Treatment

Noisy robot data, especially from real robots, can lead
to inconsistent constraints, i.e., no global solution can be
found. There are many possibilities to tackle this problem.
At first, we have to consider which kind of constraints
we have to propagate with each other. Firstly we have
the odometry predicted constraint representing our current
belief ĈB

t at time t. Furthermore we have the constraints
generated from sensor data Cz1

t , ..., C
zn
t , whereas z1, ..., zn

depict the different sensor data. Now we have to decide
which constraints to propagated with each other - and which
constraints to relax. A greedy approach is to propagate
the current belief with the sensor data iteratively while the
constraint result is not empty.

Input: ĈB
t , C

z1
t , ..., C

zn
t

Result: CB
t

CB
t ← ĈB

t ;1

for i = 1 to n do2

S ← CB
t ∩ C

zi
t ;3

if S 6= ∅ then4

CB
t ← S ;5

end6

end7

return CB
t8

Algorithm 2: Greedy propagation

The advantage of this approach is its simplicity. The
disadvantage is that constraints generated from noisy sensor
data can lead to very small constraint sets, and then other
constraints might not be taken into account because of
inconsistencies. The order of constraints used for propagation
here affects the resulting constraint CB

t . In other words,
there can be other consistent subsets when changing the
propagation order.

Another approach is to find a maximal subset of the sensor
constraints. The sensor constraints are propagated with each

other at first and propagated with the belief constraint at
second.

Input: ĈB
t , C

z1
t , ..., C

zn
t

Result: CB
t

S ← Cz1
t ;1

for i = 2 to n do2

S ← S ∩ Czi
t ;3

end4

if S ∩ ĈB
t 6= ∅ then5

CB
t ← ĈB

t ∩ S ;6

else7

CB
t ← increaseBoundaries(ĈB

t)8

end9

return CB
t10

Algorithm 3: Sensor Constraints Propagation

If S and the resulting constraint ĈB
t ∩S are not empty, they

will be propagated resulting in the new belief constraint CB
t

at time t. On the other hand, if the sensor data constraint
result S is empty, or has no common elements with ĈB

t ,
the boundaries of ĈB

t are increased and CB
t is assigned to

the new constraint. Experimental data showed a much better
convergence using this approach.

V. EXPERIMENTAL RESULTS

In our experiments in the RoboCup soccer domain, we
compared an implementation of a Monte-Carlo particle filter
(MCPF) with the constraint based algorithm described above.
We had our focus on calculation time and on localization
accuracy.

a) b)

Fig. 4. Robot situated on a soccer field. Bold black lines depict the line
segment seen by the robot. a) Gray boxes illustrate a constraint generated
from only one seen line segment. b) Two constraints are generated from
perceived lines (not in the figure), black boxes depict the resulting constraint
after propagation of the two constraints.

We used constraints given by fixed objects like goalposts,
flags and field lines identified in the images by the camera of
the robot. The creation of the related constraints was done as
follows: distances to landmarks are defined by circular rings,
where only the distances derived from the vision system of
the robot and the standard deviation of the measurement error

have to be injected. Constraints given by observed field lines
are defined by a set of rectangles and angles (Fig. 4 a)),
the distances and the horizontal bearings are sufficient to
define these constraints. All this can be done automatically.
An example for constraints generated from lines and their
propagation is given in 4 b).

During our experiments we let a robot move on a pre-
defined path. Then we compared the modeled position with
the ground truth position and calculated the localization error.
Furthermore we measured in every time step the calculation
time. As reference algorithm we used a Monte-Carlo particle
filter.

The time measurement data showed that the constraint
based algorithm (MCI) algorithm works about 5-10 times
faster than the particle filter (see Fig. 5). It also showed that
the calculation time for the particle based approach is varying
much more than for the constraint based approach.

In a further experiment we measured the localization
accuracy of both approaches (Fig. 6). Most of the time the
accuracies were comparable. Sometimes the constraint based
approach was more sensible to noisy sensor data, which
resulted in jumping positions, as Fig. 6 b) shows. In future
work we will investigate how the position can become more
stable over time.

In Fig. 7 we investigated more ambiguous data (i.e. when
only few constraints are available as in Fig. 4). In this
case, the constraint based approach provided a much better
representation of all possible positions (all those positions
which are consistent with the vision data) than a Monte-
Carlo particle filter using 100 samples. The handling of such
cases is difficult for particle filters because many particles are
necessary for representing large belief distributions. Related
situations may appear for sparse sensor data and for the
kidnapped robot problem.

In Fig. 8 we analyzed, how different constraints affect
the localization accuracy, measured as the area covered
by the belief constraint (upper row). As percepts served
the left and right goal post and the field lines. We fur-
ther focussed on how consistent and inconsistent sensor
constraints (with regard to the belief constraint) affect the
localization accuracy. It can be seen, that the covered area
of the belief (upper row) decreased whenever consistent

100 150 200 250 300
0

 1

 2

 3

 4

Update Steps

Constraint Self Locator

Monte Carlo Self Locator

C
al

cu
la

ti
o

n
 T

im
e

in
 m

s

Fig. 5. Calculation time for one modeling step on a 1.5 GHz processor.
Gray line: Monte Carlo particle filter, using 100 samples. Black line:
Calculation time per step using the constraint based algorithm.

20 40 60 80 100 120 140 160 180 200

0

5

10

15
x 106

0

Area of the
Position Constraint

Left Goal Post
Right Goal Post

Seen Lines

Consistent Percepts

Inconsistent Percepts

Frame

in mm2

Fig. 8. From the top to the bottom: (1) area of the calculated position constraint as a measure of quality; (2),(3) indicate whether the left or right goal
post were seen respectively; (4) denote the number of seen lines; (5),(6) illustrate the overall number of perceptual constraints which were consistent or
inconsistent with the position constraint respectively. Gray boxes mark the areas when wrong goal percept were seen. At this time all the seen percepts
are inconsistent and the area of position constraint grows until correct data is perceived.

a) b)

Fig. 6. Localization accuracy experiment. A robot is walking on the field
in a circle a) Monte-Carlo Particle filter based localization, the straight
reference line is shown as well under the modeled localization trace. b)
Constraint based localization.

a) b)

Fig. 7. Real robot experiment: a) The constraints generated from scene b)
Recognized flag and line depicted. The two bold rectangles (left) show that
image data leaves two possible position areas, because the seen line could
match with the center line or with the border line, respectively.

constraints were seen, regardless of inconsistent constraints.
When sensor constraints were inconsistent - and whenever
consistent constraints were not available, the area increased
- thus the localization accuracy decreased. The figure also
gives hint about which percepts the robot perceives when
scanning across the field while standing on the center circle
and it gives an idea about perception breaks, i.e., time slots
in which the robot perceives nothing.

VI. CONCLUSION

Constraint propagation techniques are an interesting alter-
native to probabilistic approaches. This paper has shown how

sensor data can be transformed into constraints. We presented
an algorithm for constraint propagation and discussed some
differences to classical constraint solving techniques. In our
experiments, the algorithm outperformed approaches like
particle filters with regard to computational needs. Future
work will include more investigations on algorithms and
further comparisons with existing Bayesian techniques. In
addition we want to check how constraint based techniques
can be applied to multiple target tracking with non-unique
targets.

REFERENCES

[1] E. Davis. Constraint propagation with interval labels. Artificial
Intelligence, 32, 1987.

[2] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlo localization
for mobile robots. In Proceedings of the 1999 IEEE International
Conference on Robotics and Automation (ICRA), volume 2, pages
1322–1328. IEEE, 1999.

[3] F. Goualard and L. Granvilliers. Controlled propagation in continuous
numerical constraint networks. ACM Symposium on Applied Comput-
ing, 2005.

[4] J.-S. Gutmann, W. Burgard, D. Fox, and K. Konolige. An experimental
comparison of localization methods. In Proceedings of the 1998
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 1998.

[5] L. Jaulin, M. Kieffer, Didrit, and E. Walter. Applied Interval Analysis.
Springer Verlag, London, 2001.

[6] R. Kalman. A new approach to linear filtering and prediction problems.
Transactions of the ASME - Journal of Basic Engineering, 82:35–45,
1960.

[7] M. Kieffer, L. Jaulin, Éric Walter, and D. Meizel. Robust autonomous
robot localization using interval analysis. Reliable Computing,
6(3):337–362, August 2000.

[8] E. Olson, J. Leonard, and S. Teller. Fast iterative alignment of pose
graphs with poor initial estimates. In International Conference on
Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE,
2006.

[9] E. Seignez, M. Kieffer, A. Lambert, E. Walter, and T. Maurin.
Experimental vehicle localization by bounded-error state estimation
using interval analysis. In Proceedings of IEEE/RSJ International
Conference of Intelligent Robots and Systems (IROS), pages 1084–
1089, 2005.

[10] A. Stroupe, M. Martin, and T. Balch. Distributed sensor fusion for
object position estimation by multi-robot systems. In A. Bredenfeld,
A. Jacoff, I. Noda, and Y. Takahashi, editors, Proceedings of the 2001
IEEE International Conference on Robotics and Automation (ICRA-
01), Lecture Notes in Artificial Intelligence, pages 154–165. Springer,
2001.

