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Abstract— This paper deals with how the absence of an
expected sensor reading can be used to improve Markov localiza-
tion. Negative information has not been used for robot localization
for various reasons like sensor imperfections, and occlusions that
make it hard to determine if a missing sensor reading is really
caused by the absence of a feature. We address these difficulties
by carefully modeling the robot’s main sensor, its camera. Taking
into account the viewing frustum and detected obstacles, the
absence of a sensor reading can be associated with the absence of
that particular feature. This information can then be integrated
into the localization process. We show the positive effect on robot
localization in various experiments. (a) In a specific setup, the
robot is able to localize using negative information where without
it, it is unable to localize. (b) We demonstrate the importance
of modeling occlusions and the impact of false negatives on
localization. (c) We show the positive impact in a typical run.

Index Terms— Negative Information, Negative Evidence, Mo-
bile Robots, Markov Localization, Monte Carlo Localization,
Obstacles Entropy

I. INTRODUCTION

The classic example of negative information was described

in the Sherlock Holmes case “Silver Blaze.” In this case, a

house has been broken into. Under such circumstances, one

would expect the watch-dog to bark. The curious incident of

the non-barking of the dog in the nighttime provides Holmes

with the information that the dog must know the burglar,

allowing him to solve the case.
We apply this idea to mobile robot localization: we allow

the robot to draw conclusions from sensor readings that it

expected but did not actually make. As Thrun, Burgard, and

Fox put it quite graphically, “not seeing the Eiffel Tower in

Paris implies that it is unlikely that we are right next to it” [15].

Using a probabilistic localization approach, this information

can be treated like an additional sensor. Markov localization,

especially Monte Carlo particle filters, have proven to be

highly successful in robot localization in various environments

such as office environments [1], dynamic environments such as

museums [16] and RoboCup [10], and outdoor applications in

unstructured environments [12]. [3] contrasts and benchmarks

implementations of Markov localization.

∗The project is funded in part by the German Research Foundation (DFG),
SPP 1125 “Cooperative Teams of Mobile Robots in Dynamic Environments”.

Our work is focussed on localization based on camera

images taken with a pan-tilt camera of small opening angle of

55◦. These images are processed and landmarks are detected.

Whenever the robot senses a landmark, the localization esti-

mate is updated using the sensor model. This sensor model is

acquired before the actual run. It describes the probability of

the measurement z given a state s (position, orientation, etc.)

of the robot. Sensor updates only occur when landmarks are

detected. In previous approaches, if no landmark is detected,

the state estimation is updated using (only) the motion model

of the robot. We extend the localization method to specifically

incorporate negative information as proposed by [6].

Negative information is defined as the ascertained absence

of an expected sensor reading. The term is chosen in accor-

dance with the terms “(false) positive” and “(false) negative”

used in statistics.

Negative information constitutes a smaller information gain

per update than sensing a landmark since, in general, there

are fewer locations from which a landmark is visible (i.e.

high information gain when a landmark is detected) than

positions from where it is not (i.e. low information gain

when no landmark is detected). A landmark is, by definition,

something that stands out in an environment. However, as the

robot moves about in its environment, negative information can

be integrated over time and can yield significantly improved

localization performance. This is especially true for cases

where the robot cannot focus on landmarks because of its

actual task at hand.

In the above definition, it is important to note that the

absence of a sensor reading needs to be ascertained. The

absence of a reading on a real robot has three main reasons:

i. the target may not be within the sensor range, ii. the

object may be occluded, and iii. the sensor may be unable

to detect the target because of sensor imperfections, imperfect

image processing, etc.. Differentiating the first two cases is

not a trivial task and requires careful sensor modeling. We

address this problem by considering the field of view (viewing

frustum) of the robot and by using obstacle detection to

estimate occlusions. The third case is modeled probabilistically

in the same way as “regular” sensors where the probability
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Algorithm 1 Iterative Bayesian updating incorporating nega-

tive evidence

1: Bel−(st) ←− ∫
p(st|st−1, ut−1)Bel(st−1)dst−1

2: if (landmark l detected) then
3: Bel(st) ←− ηp(zt|st)Bel−(st)
4: else
5: Bel(st) ←− ηp(z�

t,l|st, rt, ot)Bel−(st)
6: end if

to make sensor reading z given the current robot state s is

considered.

Related Work. Negative information modeling has been

applied to object tracking (see [14] for an introduction and

[7] for an overview). The event of not detecting an object is

treated as evidence that can be used to update its probability

density function [8]. In the RoboCup domain, not seeing the

ball on the field can be used to delete Monte Carlo particles in

that region as long as occlusions are considered [9]. Negative

information is also mentioned in the context of simultaneous

localization and mapping (SLAM) where it is used to adjust

the confidence in landmark candidates [12]. The notion of

negative information for robot localization was is introduced

recently in [6]. The authors give an introduction and give

qualitative experimental proof of the benefit of negative in-

formation. We continue this work by giving experimental

evidence showing that the concept is robust even in critical

situations. We will highlight issues encountered and consider

performance of the approach as compared to existing ones,

giving a more quantitative analysis.

Outline. In section II, we will briefly summarize how

negative information can be incorporated into Monte Carlo

localization. This is followed by a detailed description of the

sensor model used. In section III the positive impact on local-

ization and the approach’s robustness will be demonstrated in

a number of experimental benchmarks using a simulation of

the Sony Aibo ERS-7 robot.

II. EXPLOITING NEGATIVE INFORMATION

A. Iterative Bayesian Updating

This work is based on Markov localization for mobile robots

as described in [1], [15], [13]. The belief state of the robot

Bel(st) at time t to be in state st is determined by all previous

robot actions ut and observations zt. Using Bayes law and

the Markov assumption, Bel(st) can be written as a function

depending only on the previous belief Bel(st−1), the last robot

action ut−1, and the current observation zt:

Bel−(st) ←−
∫

p(st|st−1, ut−1)Bel(st−1)dst−1 (1)

Bel(st) ←− ηp(zt|st)Bel−(st) (2)

with normalizing constant η. Equation 1 shows the a priori
belief Bel−(st), which propagates the previous belief using

the motion model of the robot. The measurement is then

Fig. 1. Illustration of the viewing frustum of a Sony Aibo facing a landmark
on a RoboCup field.

incorporated into the belief as described in (2) using the sensor

model (‘sensor updating’).

In Markov localization, given an initial belief Bel(s0)
at t = t0, the robot first updates its belief using odometry,

and then incorporates new sensor information. The belief is

updated iteratively in this fashion for every following time

step. In the absence of sensor readings, no sensor updating is

performed and the belief is updated solely using odometry.

B. The Notion Of Negative Information

Negative information describes the absence of a sensor

reading in a situation where a sensor reading is expected given

the current position estimate.

To integrate negative information, imagine a binary sensor

being added that fires whenever the primary sensor does not
detect a particular landmark l. Its probability of it firing is

given by:

p(z�
l,t|st) (3)

This probability distribution can be refined by taking into

account the sensing range rt of the robot’s sensors and possible

occlusions ot of landmarks. For a mobile robot with a pan-tilt

camera, this volume is a function of the current robot state, i.e.

its position, orientation, the pan and tilt angles of the camera

and the camera’s opening angle.

By ot we denote a means of detecting whether or not

occlusions have occurred. Occlusion can be caused by the

geometry of the environment or by other mobile objects and

agents in the environment. The former can be determined with

the help of a map of the environment. The latter requires the

capability to somehow sense, model, and differentiate objects

from the environment.

Combining the two yields the probability of not sensing an

expected landmark l at time t:

p(z�
t,l|st, rt, ot) (4)

Whenever a landmark is not detected, it can be used in

the sensor update step of the Iterative Bayesian Updating (see

Algorithm 1).

63



Fig. 2. Occlusions caused by other robots. The robot is abstracted by the
gray box. If the robot was to move to the left, it would (partially) occlude
the landmark.

C. Sensor Modeling For The Sony Aibo

1) Viewing Frustum: The Aibo ERS-7 is a 4-legged robot

with a camera mounted in its head. The camera has a horizon-

tal opening angle of 55◦ and the robot’s head has 3 degrees of

freedom (neck tilt, head pan, head tilt). We abbreviate gaze

direction by ϕ = (ϕtilt1, ϕpan, ϕtilt2). The sensing range is

illustrated in fig. 1 and is determined by these three angles and

the current robot pose (position and orientation). Whether or

not an object is visible is calculated considering the camera’s

viewing frustum and the physical dimensions of the object.

2) Occlusions: In order to account for occlusions, we opted

for an approach that has been used successfully for detecting

obstacles, referred to as ‘visual sonar’ [4], [11]: The camera

image is scanned in vertical scan lines and unoccupied space

in the plane of the field is detected since it can only be of green

or white color (field lines). Scanning for these colors tells the

robot where obstacles are and where there is free space. This

can be used to determine if the visibility of the landmark is

impaired, i.e. if it is occluded by other robot or some other

obstacle. More specifically, if the expected landmark lies in an

area where the robot has detected free space, the likelihood of

the corresponding pose estimate is decreased. If it lies outside

of the detected free space, no inference can be made.

In the RoboCup environment, occlusions by the static en-

vironment do not occur unless the robot leaves the field, so

they can safely be neglected. The only cause of occlusions are

other robots on the field. An important performance factor of

the algorithm is the ability of the vision system to differentiate

between obstacles that can actually cause occlusions and those

which cannot. In the RoboCup environment, the field border is

usually considered (and also detected as) an obstacle. It does,

however, mark the end of the world for the robot and can not

occlude anything of interest to the robot and therefore needs to

be treated accordingly in the context of negative information.

On the other hand, robots that are detected may not occlude

landmarks as is shown in fig. 2. Based on the intercept

theorems, occlusion occurs only if
(ho−hc)∗dl

do
− hc > hl.

One important result of this is that obstacles (i.e., other

robots) farther away than about 1m cannot occlude landmarks

on the field. Taking this into account further increases the

performance of the proposed approach.

Taking into account the viewing frustum and possible

occlusions the sensor model for not perceiving an expected

landmark (equation 4) becomes:

p(z�
t,l|st, zt,obs) (5)

where zt,obs describes the current obstacle percept and

st = (xt, yt, ϑt, ϕt) the robot state consisting of the robot
pose (position xt, yt, and orientation ϑt) and the current gaze

direction ϕt.

D. Monte Carlo Localization, Implementation

This work is based on the Monte Carlo localization de-

scribed in [13], which also serves as a base line implementa-

tion. Sensor updating was extended to account for field of view

(FOV) and occlusion as described. This also requires sensor

updating to be triggered by new camera images regardless of

whether or not there was a percept. Before re-sampling, the

weight of an individual particle is calculated as follows: Of

all landmarks L, the subset of landmarks L′ is detected, the

subset L� is expected but not detected, and lastly the subset

L� is not detected but was also not expected: L = L′∪L�∪L�

and L� ∩L′ = ∅. The probability of a particle pi is calculated

by multiplying all the likelihoods of all gathered evidences:

pi =
∏
l∈L′

sl(αmeasd, αexpd)

︸ ︷︷ ︸
detected

·
∏

l∈L�

s�
l (ϕ, zobs, αexpd)

︸ ︷︷ ︸
expected and not detected

(6)

The function sl is an approximation of the sensor model

and returns the likelihood of sensing the landmark l at angle

αmeasd for a particle pi that expects this landmark to be at

αexpd. Function s�
l models the probability of not sensing the

expected landmark l ∈ L� given the current sensing range as

determined by gaze direction ϕ, the robot pose associated with

pi, and the obstacle percept zobs.

III. EXPERIMENTAL RESULTS

The RoboCup Sony 4-Legged League serves as a test bed

for our work. In the 4-Legged League, teams of 4 Sony Aibo

ERS-7 robots play soccer against each other in a color coded

environment (see the official RoboCup web site for details:

www.robocup.org). Colored beacons (4 uniquely color coded

beacons plus a blue and a yellow goal) and the field lines

(similar to the real soccer field lines) serve the robots for

localization. In our experiment, unless otherwise stated, only

landmarks were used for localization to emphasize the effect

of using negative information.

Two quantities can be used when a landmark is seen:

its size in the camera image can be used to estimate the

distance to the landmark dl and the relative angle to the

landmark (bearing αl) can be calculated from its position

within the image. In practice we only use the bearing because

the distance measurement is error prone. Note that this differs

from triangulation where distances are used.

In each of the following experiments, the localization mod-

ule starts with a uniform (random) particle distribution. As

the robot receives sensor measurements, the progression of

the distribution over time is monitored.
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Fig. 3. Experiment A: Robot (small white thing in the middle) trying to
localize when standing in front of the landmark. The area accessible to the
camera when scanning is highlighted. Note that the landmark to the left and
the goal on the right are just outside of this area. The particle distribution
after 5 seconds using negative information is shown by the arrows.

We use the expected entropy H as an information theoretical

quality measure of the position estimate Bel(st) [2]:

Hp(st) = −
∑
st

Bel(st) log(Bel(st))

The sum runs over all possible states. The entropy of the

particle distribution becomes zero if the robot is perfectly

localized in one position, maximal values of H mean that

Bel(st) is uniformly distributed.

In addition to entropy, we consider the distance error of the

localization w.r.t. the robot’s real position (which is known in

simulation). We define the error Δr as the average distance

of particles to the actual robot position �xtrue:

Δr =
1
N

N∑
i=1

|�xi − �xtrue|

where �xi is the position of particle i and N is the number

of particles. Similarly, entropy and accuracy of the robots

orientation is calculated.

The experiments were conducted in simulation using log

files to ensure reproducible results and identical sensor input

when benchmarking the approach, and to allow for a greater

particle number, which results in a smoother representation of

the probability distribution.

A. Experiment A: One Landmark

In this experiment, the robot is standing in front of a single

landmark and performs a scanning motion with its head. This

scan covers 90◦ + 55◦ = 145◦ in front of the robot (fig. 3).

Within this area there is no other landmark. The goal of

this experiment is to show that even with very few sensor

readings, localization is possible when negative information is

also taken into account. Fig. 4 shows the localization error over

time, the number of particles that were updated using negative

information and a schematic illustrating the robot’s positive

Fig. 4. Experiment A: The distance error of the localization over time.
The dotted line is without negative information, the solid blue line marked
with the star is with negative information integrated. The green bars represent
the number of particles, which are updated using negative information (those
which expected to see a landmark but did not) summed over all landmarks.
Below: The diagram indicates if a landmark (LM) or goal (G) was seen (“ | ”),
not seen (“−”), or expected but not seen for any of the particles (“x”).

and negative percepts. This first experiment reproduces the

results presented in [6].

Not using negative information. The experiment starts with

a uniform particle distribution, which equals to maximum

entropy. When the landmark comes into view, a decrease in

localization error can be observed. This information gain is

due to the robot being able to now infer its relative orientation

w.r.t. the landmark. Since there are no further constraints on

the robot’s position, the entropy remains at a relatively high

level and the position error does not decrease. In other words,

although there is a drop in entropy, the position estimate is

still highly uncertain.

Incorporating negative information. When using negative

information, the particle distribution converges towards the

actual robot pose. If you look at fig. 3 closely, you will notice

that the range of the scan covers quite a lot of the field and

that it is bordering on a goal and a beacon. This has an effect

on how much the particle distribution converges. In the case

described here, almost a maximum of negative information

is incorporated. The maximum would be reached if the scan

range could not be increased any further without including

the landmarks. In this case, the localization result would be

just as good as actually seeing the landmarks. If the range

of the scan was smaller or the robot would stand closer to

the landmark, less negative information would be gathered,
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Fig. 5. Experiment B: In this situation, the landmark on the left is occluded
by another robot. The red rectangle marks the actual position of the robot on
the field close to the center circle facing outward. The blue particle distribution
shows the localization using negative information and taking occlusion into
account. The red particle distribution (also marked by the dashed line) in the
top left corner shows the effect of false negatives: if obstacles are not treated
properly, false negatives incorporated into the probability distribution results
in convergence in the wrong area of the field.

and the distribution would converge only to an area around a

segment of a circle around the landmark.

Note that the number of particles that are updated using

negative information decreases as the localization improves.

B. Experiment B: Two Landmarks, One Occluded

The goal of this experiment was to prove that obstacles are

modeled correctly. The robot is placed on the center line and it

performs a scan as shown in fig. 5. From where it is standing,

two landmarks are within its sensing range. However, one of

the landmarks is occluded by another robot.

As in the previous experiment, the standard approach is

unable to localize. When negative information is incorporated

taking into account occlusions, the robot is able to localize

quite accurately.

The figure also shows what happens if obstacles are not

modeled correctly. Not modeling obstacles causes false nega-
tives, i.e. the robot fails to see a landmark due to occlusions

and wrongly assumes that it is absent. In these cases, the

particle distribution converges to a completely wrong robot

pose on the corner of the field. (This position is, of course,

compatible with seeing a landmark at the right end of the scan

an not seeing anything for the rest of the scan.)

C. Experiment C: Moving Robot

In this experiment, the robot walks on field following the

ball. The aim of it is to show the performance of the approach

in an actual application. Fig. 6 shows the localization error

and the particle distribution entropy in the first 3 seconds of

the run.

In all four curves, the appearance of landmarks in the

camera images leads to an improvement in localization. When

only percepts are used, distinct steps can be seen in the

respective curves. As long as no new evidence is gathered,

the level of uncertainty stays the same.

Fig. 6. Experiment C: Entropy of the particle distribution and localization
error of a robot walking on the field chasing a ball. The solid, blue lines
marked with the star represent the localization with negative information used,
dotted lines without negative information. It shows that negative information
is able to “fill in the blanks” before the next landmark is actually perceived.

Incorporating negative information leads to a smoother

decrease in uncertainty and better localization in the case of

limited percepts. After some time, though, the robot has seen

three landmarks and the quality of the localization reaches

similar levels in both cases.

One important conclusion from this is that negative info can

help fill in the blanks in situations where there is incomplete

sensor input. The quality of the resulting localization is limited

by the best possible localization using all percepts potentially

available at a given position. In other words: negative and

positive evidence are two sides of the same coin; a well

localized robot cannot further improve its localization by

negative evidence because there will be no negative evidence

(cf. number of particles updated using negative information in

fig. 4).
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D. Kidnapped Robot

The kidnapped robot problem is a commonly used bench-

mark for the flexibility and robustness of localization algo-

rithms [3]: a localized robot is displaced and the time for it

to recover is measured.

As indicated in [6], the increased responsiveness of the

localization when using negative information has a positive

impact in the kidnapped robot benchmark. One reason for this

is the additional information that is used when the robot re-

localizes, resulting in faster convergence of the particle distrib-

ution as shown in the above experiments. But not only does the

distribution converge more quickly, it also diverges quicker in

the absence of sensor readings that would confirm the robot’s

past position. The distribution therefore better resembles the

actual situation of being lost and offers a much better starting

point for subsequent re-localization. This is particulary helpful

in RoboCup game situations where the robot often gets pushed

by other robots. Unless collisions are explicitly modeled

[5], these relatively small displacements may go unnoticed

by the localization. Using negative information, the particle

distribution diverges quickly to nearby positions, which often

quite accurately models what has actually happened to the

robot.

Run time performance. No explicit run time measurements

have been made so far since the code is not yet optimized

to run on the Aibo. Qualitatively speaking, the calculations

necessary to decide if negative evidence is present is slightly

more complex than the calculations used to calculate the

similarity of a percept. These calculations have to be made

for all 6 landmarks (compared to 1-2 for seen landmarks). In

the worst case, this means that the weighting of particles takes

6 times as long.

IV. CONCLUSION

Negative evidence can be used to improve Markov localiza-

tion of a mobile robot. To achieve this, the robots sensor needs

to be modeled carefully. In our case, this means taking into

account the robot’s camera’s viewing frustum and obstacles

in its environment. In experiments we are able to show the

strength of this approach. It allows the robot to localize

in situations where without the use of negative information

it could not. We also show how obstacle modeling helps

to avoid “false negatives”. In actual application scenarios,

negative information is able to fill in the gaps when not enough

landmarks are seen. It is interesting to note that in this context,

it may make sense for the robot to direct its gaze towards

areas where it doesn’t actually see a landmark but can rule

out hypothesis that would expect a landmark in that area.

Future work. We will work on ways to improve run time

performance by not considering the potential negative evidence

of all landmarks but only of those relevant. This work will

be part of an active vision system for the robot where early

tests have shown that modeling negative evidence is a good

way to decide if sensing actions are successful and thus guide

attention.
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