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Abstract. In this paper we present a novel approach to estimate the
position of objects tracked by a team of robots. Moving objects are com-
monly modeled in an egocentric frame of reference, because this is suffi-
cient for most robot tasks as following an object, and it is independent of
the robots localization within its environment. But for multiple robots,
to communicate and to cooperate the robots have to agree on an allocen-
tric frame of reference. Instead of transforming egocentric models into
allocentric ones by using self localization information, we will show how
relations between different objects within the same camera image can be
used as a basis for estimating an object’s position. The spacial relation
of objects with respect to stationary objects yields several advantages:
a) Errors in feature detections are correlated. The error of relative po-
sitions of objects within a single camera frame is comparably small. b)
The information is independent of robot localization and odometry. c)
Object relations can help to detect inconsistent sensor data. We present
experimental evidence that shows how two non-localized robots are ca-
pable to infer the position of an object by communication on a RoboCup
Four-Legged soccer field.

1 Introduction

For a mobile robot to perform a task, it is important to model its environment,
its own position within the environment and the position of surrounding objects,
which can be other robots as well. This task is made more difficult when the
environment is only partially observable. The task is characterized by extracting
information from the sensor data and by finding a suitable internal representation
(model).

In hybrid architectures [I], basic behaviors or skills, such as, e.g., following a
ball, are often based directly on sensor data, e.g., the ball percept. Maintaining
an object model becomes important if sensing resources are limited and a short
term memory is required to provide an estimate of the object’s location in the
absence of sensor readings.

Modeling objects and localization is often decoupled to reduce the computa-
tional burden. In this loosely-coupled system, information is passed from local-
ization to object tracking. The effect of this loose coupling is that the quality of
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the localization of an object in a map is determined not only by the uncertainty
associated with the object being tracked, but also by the uncertainty of the ob-
server’s localization. In other words, the localization error of the object is the
combined error of allocentric robot localization and the object localization error
in the robot coordinate frame.

For this reason, robots often use an egocentric model of objects relevant to
the task at hand, thus making the robot more robust against global localization
errors. A global model is used for communicating information to other robots
[11] or to commonly model a ball by many agents with Kalman filtering [2]. In
all cases, the global model inherits the localization error of the observer.

We address this problem by modeling objects in allocentric coordinates from
the start. Furthermore in RoboCup one can see a removal of more and more
uniquely identifiable landmarks during the last years. The number beacons in
the Four-Legged League has decreased from six to two beacons within four years.
Therefore in this paper we focus on using object to field line relations.

In feature based belief modeling, features are extracted from the raw sensor
data. We call such features percepts and they correspond directly to objects in
the environment detectable in the camera images. In a typical camera image of
a RoboCup environment, the image processing could, for example, extract the
following percepts: ball, line point, so called edgel, opponent player, and goal.
A edgel describes in our case the detection of a point that lies on a field line.
Here it contains the position of that point relative to the robot in 2D space
and the normal vector angle of the field line in this point, relative to the robot.
Usually percepts are considered to be independent of each other to simplify
computation, even if they are used for the same purpose, such as localization.
Using the distance of features detected within a single camera image to improve
Monte-Carlo Localization was proposed by [6]. The idea of using object relations
has already been used in various map buildings tasks [I2]. Using the spacial
ordering of landmarks in the image for self localization was introduced by [14].

When modeling objects in relative coordinates, using only the respective per-
cept is often sufficient. However, information that could help localize the object
within the environment is not utilized. That is, if the ball was detected in the
image right next to a goal, this helpful information is not used to estimate its
position in global coordinates.

We show how using the object relations derived from percepts that were ex-
tracted from the same image yields several advantages:

Sensing errors. As the object of interest and the reference object are detected in
the same image, the sensing error caused by joint slackness, robot motion, etc.
becomes irrelevant as only the relation of the objects within the camera image
matters.

Global localization. The object can be localized directly within the environment,
independent of the quality of current robot localization.

Communication. Using object relations offers an efficient way of communicating
sensing information, which can then be used by other robots to update their
belief by sensor fusion.
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Fig. 1. As testbed served the play field of the Sony 4-Legged League. Flags, goals, lines
and the ball can be found on the field at fixed positions as shown.

1.1 Outline

We will show how relations between objects in camera images can be used for
estimating the object’s position within a given map and in which way different
types of information can be used for this task. Particularly we want to analyze
how information from non-uniquely identifiable objects as field lines can be in-
corporated. We will present experimental results using a Monte-Carlo Particle
Filter to track the ball. Furthermore, we will show how communication between
agents can be used to combine incomplete knowledge from individual agents
about object positions, allowing the robot to infer the object’s position from
this combined data.

Our experiments were conducted on the color coded field of the Sony Four
Legged League using the Sony Aibo ERS-7, which has a camera resolution of
208 * 160 pixels YUV and an opening angle of only 55°.

2 Object Relation Information

In a RoboCup game, the robots permanently scan their environment for land-
marks as there are flags, goals, the ball and field lines. We abstract from the
algorithms which recognize the ball and the landmarks in the image as they are
part of the image processing routines. In the next section we will give a brief
overview over the information to be gained from each of the percepts, which is
already described in more detail in [4].

2.1 Information Gained by Percepts

While describing percepts the robot receives, we want to distinguish uniquely
identifiable objects from those which can not be uniquely identified. Fig. 2l gives
an example of possible percepts the robot can perceive.
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Fig. 2. Examples for what the robot can perceive: a) Flag and the ball, b) goal and
the ball, ¢) a field-line and the ball

Fig. 3. Single percept: a) When a flag is seen, a circle containing all possible robot
positions remains, b) The circle shows all possible positions for a seen goal. Light grey
robot shapes represent possible robot positions; Two percepts in one image c¢) When
seeing a flag and a ball in one image, the distance dp; of the ball to the flag can be
calculated; for all possible ball positions a circle remains, d) same situation for a seen
goal and a ball, the spiral arc represents all possible ball positions.

Unique Objects. When seeing a two-colored flag, a robot actually perceives the
left and right border of the flag, which enables it to calculate the distance and
the angle to the flag (fig.Bla). In the given approach this information is not being
used for self localization but for calculating the distance from other objects as the
ball to the flag. If a goal is detected, the robot can measure the angle between the
left and the right goal-post. For a given goal-post angle the robot can calculate
its distance and angle to a hypothetical circle center, whereas the circle includes
the two outer points of the goal-posts and the point of the robot camera (fig.Bb).
If a ball is perceived, the distance to the ball and its direction relative to the
robot can be calculated. So far all percepts we described are more or less unique,
i.e., every percept can be assigned to a certain object in the robot’s environment.
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Table 1. Percept Statistics (Example)
Percentage of Percept Occurance in Images

Ball Flag Goal Line
35 52 22 59

Only Ball Ball and Flag Ball and Goal Ball and Line
3 24 8 28

Fig. 4. a) A line-point (small circle) is seen together with a ball. The edgel data contains
the position of the line on the field and the normal vector of the corresponding line
(small arrows). Therefrom the ball distance to the line and the angle from the line-point
to the ball can be calculated; b) Grey dotted lines represent all remaining possible ball
positions on the field, when the ball-line percept is known; for better understanding the
real robot position is drawn in detail, the other (schematic) robot drawings represent
other possible robot and ball positions on the field.

Now we want to describe what kind of information can be gathered from field
lines as an example for non-unique objects.

Non-unique Objects. On a soccer field, line information is a useful feature to
reason about the robot position or about object positions. As can be seen in
table [ field lines are very often present in robot images - often together with
other percepts as flags, goals or the ball. Now we will analyze which information
line data can bring. We will investigate this question for the case, in which a ball
and a line are seen simultaneously. When our robot perceives a line, it actually
perceives one or more points of the line, together with the normal vector of the
line, as fig. @l a) shows. When a ball is seen in the same image as well, the robot
can calculate a shape, containing all possible ball positions on the field. When,
e.g., a ball is seen 10 cm away from an edgel in an angle of 45°, all points on the
field are possible ball positions, which lie in 10 cm and an 45° angle from any
edgel of the field, see fig. @ b). Or very easy speaking: when the robot sees a ball
directly on a field line, then every point on any field line could be a possible ball
position.

When there is more than just one line percept in the image, many approaches
exist to combine different edgels to one or more different lines [10]. Every edgel
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Fig. 5. a) The robot sees a ball next to two different lines; b) assuming, that the robot
perceived for each of both lines an edgel percept, resulting in two solution sets (weak
grey and strong orange dotted lines). One can calculate the remaining possible ball
positions by cutting both solution spaces. The cut is then reduced by all solutions
which would result in a wrong angle between the line percepts, related to the ball.
Crossed circles (red) represent all remaining possible ball positions on the field.

can be treated as different evidence for modeling the object’s position. This is
especially interesting in situations where line crossings or other alignments of
different lines occur at once. Being able to relate an object’s position to different
lines constraints the solution space for the remaining ball positions drastically,
as fig. B b) shows. Every ball-edgel pair enables the robot to calculate possible
ball positions on the field (the solution space) as in fig. @1 b). When seeing two
or more of these ball-line pairs, the resulting ball positions can be calculated as
the cut operation of all these solution spaces. The remaining solution space can
be reduced even more, because the angle between the different edgels related to
the ball is also measurable from the image (fig. Bl b)).

2.2 Dependencies between Percepts / Sensor Model

In this section we want to analyze the correlation between errors of different
percepts within one image. For the sensor model, we measure the standard de-
viation ¢! by letting a robot take multiple images of certain scenes: a ball, a
flag, a goal, a line and combinations of it. The standard deviation of distance
differences and respectively angle differences of objects in the image relative to
each other were measured as well. The robot is walking on the spot to keep the
distance within the environment constant an to get noisy sensor data as dur-
ing real robot motions. We found out that the angle errors of different percepts
within the same image are strongly correlated which can be seen in fig. [0l in case
of a ball and a flag.

3 Multi-agent Modeling

Now we want to describe a possible implementation of this approach. As the
sensor data of our Aibo ERS-7 robot are not very accurate, we have to cope
with a lot of sensor noise. Furthermore, the probabilistic distribution is not
always unimodal, e.g., in cases where the observations lead to more than one
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Fig. 6. The diagrams show the measured angle error to a ball and to a flag. The ball
is located at a distance of 1.5m, the flag at 2.0m. a) flag and ball are seen in the same
image, the angle errors between both are strongly correlated; b) the ball is seen 0.03
seconds earlier than the flag, lower correlation; c) the ball is seen 0.2 seconds earlier
than the flag, almost no correlation between the angle errors.

solution for possible ball positions. This is why a simple Kalman filter would
not be sufficient [7]. We chose an implementation using a Monte-Carlo Particle
Filter because of its ability to model multimodal distributions and its robustness
to sensor noise. Other approaches as Multi Hypothesis Tracking or Grid Based
algorithms might work also [5]. As we cope with static situations this time only,
we could abstract from network communication time and the delay after which
percept relations were received.

3.1 Monte-Carlo Filter For Multi Agent Object Localization

Markov localization methods, in particular Monte-Carlo Localization (MCL),
have proven their power in numerous robot navigation tasks, e.g., in office en-
vironments [3], in the museum tour guide Minerva [I3], in the highly dynamic
RoboCup environment [§], and outdoor applications in less structured environ-
ments [9]. MCL is widely used in RoboCup for object and self localization [7]
because of its ability to model arbitrary distributions and its robustness towards
noisy input data. The probability distribution is represented by a set of samples,
called particle set. Each particle represents a pose hypothesis. The current belief
of the object’s position is modeled by the particle density, i.e., by knowing the
particle distribution the robot can approximate its belief about the object state.
Thereby the belief function Bel(s;) describes the probability for the object state
s¢ at a given time t. Using the Markov assumption and Bayes law, the belief
function Bel(s;) depends only on the previous belief Bel(s;—1), the last robot
action u;—1 and the current observation z;:

Bel™ (s¢) «+— /p(st|st,1ut,1)Bel(st,l)dst,1 (1)
S ~ -~

process model
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Bel(st) < n p(atlst) Bel™ (st) (2)
~ ~ -
sensor model

whereas 7 is a normalizing factor. Equation (II) shows how the a priori belief
Bel™ is calculated from the previous Belief Bel™(s;—1). It is the belief prior
the sensor data, therefore called prediction. As our robots do not perform any
actions with the ball and as the situation is static, our propagation step becomes
very simple or can be left out. In () the a-priori belief is updated by sensor data
zt, therefore called update step. Our update information is information about
object relations as described in section 2.1l The data from fig. [ can serve as a
sensor model, telling the filter how accurate the sensor data are. The particles
are distributed equally at the beginning, then the filtering process begins.

3.2 Monte-Carlo Localization, Implementation

Our hypotheses space for object localization has two dimensions for the position
q on the field. Each particle s° can be described as a state vector s°

9y )
and its likelihood p°.

The likelihood of a particle p’ can be calculated as the product of all likeli-
hoods of all gathered evidence [I2]. From every given sensor data, e.g., a land-
mark [ and a ball (with its distances and angles relative to the robot) we calculate
the resulting possible ball positions relative to the landmark [. The resulting arc
will be denoted as . We showed in 2] that &' has a circular form, when [ is
a flag, a spiral form, when [ is a goal or a set of lines, when [ is an edgel. The
shortest distance ¢! from each particle 5% to ¢ is our argument for a Gaussian
likelihood function N(8, 1, o). The parameters of the Gaussian where derived
experimentally. The sensor model being assumed to be Gaussian showed to be
a good approximation in experiments. The likelihood is being calculated for all
seen landmarks [ and then multiplied:

p = HN((Sl,O,U) (4)

leL’!

In cases without new evidence all particles get the same likelihood. After
likelihood calculation, particles are resampled.

Multi Agent Modeling. Percept relations from every robot are communicated to
every other robot. The receiving robot uses the communicated percept relations
the same way it uses its own for likelihood calculation of each particle

— By communicating percept relations rather than particles, every robot can
incorporate the communicated sensor data to calculate the likelihood of its
particle set.
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4 Experimental Results

As a test platform served the Aibo ERS-7. In the first reference algorithm, to
which we compare our approach, two robots try to localize and to model the
ball in an egocentric model. As a result each robot maintains a particle distri-
bution for possible ball positions, resulting from self localization belief and the
locally modeled ball positions. In our situation neither robot is able to accurately
determine the ball position. Then the two robots communicate their particle dis-
tribution to each other. After communication each robot creates a new particle
cloud as a combination of its own belief and the communicated belief (commu-
nicated particle distribution). We want to check how this algorithm performs in
contrast to our presented algorithm in situations, where self localization is not
possible, e.g., when every robot can only see one landmark and the ball.

In our first experiment, we placed both robots in front of different landmarks,
one in front of a goal and one in front of a line with partially overlapping fields
of view, such that both robots could see the ball (fig. [1 and []).

The robots cannot accurately model the ball position when just communicating
particle distributions, whereas by communicating percept relations the modeled

Fig. 7. Experiment A: views from two robots: a) robot A seeing a ball and a goal; b)
robot B seeing a ball and a line

Fig. 8. Experiment A: the modeled ball position. a) both robots try to localize and have
an egocentric ball model. After interchanging their particle distribution, the particle
cloud does not convergence to a confined area; b) robots interchange the percept rela-
tions (ball-line and ball-goal), then updating and resampling the particle distribution.
The distribution converges quickly to two small areas.
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S b)

Fig. 9. Experiment B: The upper robot can see the ball and a line, the lower robot can
see the flag only, because it is too far away to see the line. a) communicating particles
does not lead to a convergence of the particles; b) communicating percept relations
leads to convergence of the particle cloud to two small areas.
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Fig. 10. Entropies over time for the experiments A and B. a) Experiment A: the dotted
line represents the entropy for communicating percept relations, the continuous line
represents the particle entropy for communicating percept distributions; b) Experiment
B: dotted line represents ball particle entropy when communicating percept relations,
continuous line for communicating particle distributions.

position converges to two small areas (fig. §]). Entropy measurement shows this
quantitatively in fig. [[0 a) - the entropy is much smaller, when percept relations
are communicated. In Experiment B (fig.[) one robot sees a flag, the other robot
sees a line and both can see the ball. Again the robots try to localize and model
the ball position egocentricly. Then they transform the egocentricly modeled ball
particles into allocentric coordinates and communicate the particle distribution to
each other. Simple particle communication does not lead to a convergence of the
resulting particle distribution, whereas communicating percept relations leads to
a convergence to a confined area (fig. @b) ). Also entropy is much smaller again,
when communicating percept relations [0 b).

5 Conclusion

Object relations, especially line information, in robot images can be used to
localize objects in allocentric coordinates, e.g., if a ball is detected in an image
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next to a goal, the robot can infer something about where the ball is on the
field. Percept relations can also help to detect image processing errors. Without
having to be localized at all, it can accurately estimate the position of an object
within a map of its environment using nothing but object relations. Furthermore,
we were able to show how the process of object localization can be sped up by
communicating object relations to other robots. Two non-localized robots are
thus able to both localize an object using their sensory input in conjunction with
communicated object relations.

Future Work. Future work will investigate, how the presented approach can be
extended to moving objects, letting the robot infer not only about the position
but also about the speed. Another interesting question would be, how redundant
computation that is done by every agent can be distributed among the different
robots while staying robust against system failures of different robots.
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