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Abstract. In this paper we present a novel approach to estimating the
position of objects tracked by a team of mobile robots. Modeling of
moving objects is commonly done in a robo-centric coordinate frame
because this information is sufficient for most low level robot control
and it is independent of the quality of the current robot localization. For
multiple robots to cooperate and share information, though, they need
to agree on a global, allocentric frame of reference. When transforming
the egocentric object model into a global one, it inherits the localization
error of the robot in addition to the error associated with the egocentric
model.

We propose using the relation of objects detected in camera images
to other objects in the same camera image as a basis for estimating
the position of the object in a global coordinate system. The spacial
relation of objects with respect to stationary objects (e.g., landmarks)
offers several advantages: a) Errors in feature detection are correlated and
not assumed independent. Furthermore, the error of relative positions
of objects within a single camera frame is comparably small. b) The
information is independent of robot localization and odometry. c) As
a consequence of the above, it provides a highly efficient method for
communicating information about a tracked object and communication
can be asynchronous.

We present experimental evidence that shows how two robots are able
to infer the position of an object within a global frame of reference, even
though they are not localized themselves.

1 Introduction

For a mobile robot to perform a task, it is important to model its environment,
its own position within the environment, and the position of other robots and
moving objects. In RoboCup, the most important object to track is, naturally,
the ball. The task of estimating the position of an object is made more difficult
by the fact that the environment is only partially observable to the robot.
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In hybrid architectures [1], basic behaviors or skills, such as following a ball,
are often based directly on sensor data, e.g., the ball percept. Maintaining an
object model becomes important if sensing resources are limited and a short
term memory is required to provide an estimate of the object’s location in the
absence of sensor readings.

Robots often use an egocentric model of objects relevant to the task at hand,
thus making the robot more robust against global localization errors. A global
model is used for communicating information to other robots [8], to commonly
model a ball by many agents with Kalman filtering [2] or to model object-
environment interactions [5]. In all cases, the global model inherits the localiza-
tion error of the observer.

We address this problem by modeling objects in allocentric coordinates from
the start. To achieve this, the sensing process needs to be examined more closely.
In a typical camera image of a RoboCup environment, the image processing
could, for example, extract the following percepts: ball, opponent player, and goal.
Percepts are commonly considered to be independent of each other to simplify
computation, even if they are used for the same purpose, such as localization [7].

When modeling objects in relative coordinates, using only the respective per-
cept is often sufficient. However, information that could help localize the object
within the environment is not utilized. That is, if the ball was detected in the
image right next to a goal, this helpful information is not used to estimate its
position in global coordinates.

We show how using the object relations derived from percepts that were ex-
tracted from the same image yields several advantages:

Sensing errors. As the object of interest and the reference object are detected
in the same image, the sensing error caused by joint slackness, robot motion,
etc. becomes irrelevant as only the relation of the objects within the camera
image matters.

Global localization. The object can be localized directly within the environ-
ment, independent of the quality of current robot localization.

Communication. Using object relations offers an efficient way of communicat-
ing sensing information, which can then be used by other robots to update
their belief by sensor fusion.

Outline. We will show how relations between objects in camera images can be
used for estimating the object’s position within a given map. We will present ex-
perimental results using a Monte-Carlo Particle Filter to track the ball. Further-
more, we will show how communication between agents can be used to combine
incomplete knowledge from individual agents about object positions, allowing
the robot to infer the object’s position from this combined data.

Our experiments were conducted on the color coded field of the Sony Four
Legged League using the Sony Aibo ERS-7.
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a) b)

c) d)

Fig. 1. Single percept: a, b) When a flag or a goal is seen, the robot can calculate its
distance to it, but not its exact position, a circle remains for all possible robot positions.
Two percepts in one image c, d) a flag/goal and a ball let the robot determine the
ball’s position relative to the flag/goal; all possible positions of the ball relative to the
flag/goal form a circle/spiral arc.

2 Object Relation Information

In a RoboCup game, the robots permanently scan their environment for land-
marks as there are flags, goals, and the ball. The following section presents the
information gained by each perception.

2.1 Information Gained by a Single Percept

If the robot sees a two colored flag, it actually perceives the left and the right
border of this flag and thus the angle between those two borders. Because the
original size of landmarks is known, the robot is able to calculate its own distance
to the flag and its respective bearing (Fig. 1 a). In the given approach we don’t
need that sensor data for self localization, but for calculating the distance from
other objects as the ball to the flag.

If a goal is detected, the robot can measure the angle between the left and the
right goal-post. For a given goal-post angle the robot can calculate its distance
and angle to a hypothetical circle center (Fig. 1 b).

If a ball is perceived, the distance to the ball and its direction relative to
the robot can be calculated. Lines or line crossings can also be used as reference
marks, but the sensor model for lines is more complex than for a goal or a flag as
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there are many equally looking line segments on the field. For simplicity reasons
we didn’t use line information in the given approach.

2.2 Information Gained by Two Percepts Within the Same Image

If the localization object is visible together with another landmark, e.g., a flag or
a goal, the robot does not only get information about distances to both objects
but also information about the angle between them. With the law of the cosine
the distance from the ball to a flag can be calculated (Fig. 1 c).

When a goal and a ball were seen, a similar determination of the position can
be done for the ball, but the set of possible solutions leads to a spiral curve (Fig. 1
d). But one landmark and one ball alone are not sufficient to exactly determine
the ball’s position. One possibility to overcome this limitation would be to scan
for other landmarks and take this information into account, but this could be
time consuming. Another approach would be to let the robots communicate and
interchange the necessary information for an accurate object localization. This
has two advantages:

1. Apart from communication time which takes about two or three tenth of a
second, information transfer between robots is cheap in resources, as only
few data needs to be transferred.

2. Many robots can gather more information than a single robot, because many
robots can see more than one robot.

Now we want to describe a possible implementation of this approach. As the
sensor data of our Aibo ERS-7 robot are not very accurate, we have to cope with
a lot of sensor noise. Furthermore, the probabilistic distribution is not always
unimodal, e.g., in cases where the observations lead to more than one solution
for possible ball positions. This is why a simple Kalman filter would not be
sufficient [5]. We chose an implementation using a Monte-Carlo Particle Filter
because of its ability to model multimodal distributions and its robustness to
sensor noise. Other approaches as Multi Hypothesis Tracking or Grid Based
algorithms might work also [4].

3 Monte-Carlo Filter for Multi Agent Object Localization

Markov localization methods, in particular Monte-Carlo Localization (MCL),
have proven their power in numerous robot navigation tasks, e.g., in office envi-
ronments [3], in the museum tour guide Minerva [9] and in the highly dynamic
RoboCup environment [6]. MCL is widely used in RoboCup for object and self
localization [7] because of its ability to model arbitrary distributions and its
robustness towards noisy input data. It uses Bayes law and Markov assumption
to estimate an object’s position. The probability distribution is represented by
a set of samples, called particle set. Each particle represents a pose hypothesis.
The current belief of the object’s position is modeled by the particle density,
i.e., by knowing the particle distribution the robot can approximate its belief
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about the object state. The ball position is modeled relative to the field, which
makes it independent from robot motions. The a-priori belief is updated by sen-
sor data zt, therefore called update step. Our update information is information
about object relations as described in section 2. Therefore a sensor model is
needed, telling the filter how accurate the sensor data are. The localization is
being ititialized with Bel(s0) at t = t0. The particles from the particle set are
distributed arbitrarily across the field. Every ball position is equally uncertain.
If sensor data is gained, the particle set will be updated and after a few steps
converge to a certain area.

3.1 Monte-Carlo Localization, Implementation

Our hypotheses space has two dimensions for the position q on the field. Each
particle si can be described as a state vector −→s i

−→s i =
(

qi
x

qi
y

)
(1)

and its likelihood pi.
The likelihood of a particle pi can be seen as the product of all likelihoods of all

gathered evidences [7], which means in our case that for all landmark-ball pairs
a likelihood is being calculated. From every given sensor data, e.g., a landmark
l and a ball (with its distances and angles relative to the robot) we calculate
the resulting possible ball positions relative to the landmark l, as described in
section 2.2. The resulting arc will be denoted as ξl. We showed in 2.2 that ξl

has a circular form, when l is a flag and a spiral form, when l is a goal. The
shortest distance δl from each particle −→s i to ξl is our argument for a Gaussian
likelihood function N (δ, μ, σ), where μ = 0 and with a standard deviation σ,
which is determined as described in the next section. In fact, the sensor model
is more complex than a Gaussian, but assuming it to be Gaussian showed to be
a good approximation. The likelihood is being calculated for all seen landmarks
l and then multiplied:

pi =
∏
l∈L′

N (δl, 0, σ) (2)

In cases without new evidence all particles get the same likelihood. After
likelihood calculation, particles are resampled.

Multi Agent Modeling. To incorporate the information from other robots, percept
relations are communicated to other robots. The receiving robot uses the commu-
nicated percepts for likelihood calculation of each particle the same way as if it
was its own sensor data. This is advantageous compared to other approaches:

– Some approaches communicate the particle distributions. But when, as in our
examples, two robots only know the arcs or the circular function on which
the ball could be found, this would increase position entropy rather than
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Table 1. Object distance and angle standard deviations

Object Standard Deviation σ

Distance in mm σDst in mm σAng in Rad

Ball 1500 170 0.015

Flag 2000 273 0.019

Goal 2000 25 0.021

Flag- Ball-Diff. 500 196 0.008

Goal- Ball-Diff. 500 175 0.0054

decreasing it. Communicating whole particle sets can also be very expensive
in resources.

– By communicating percept relations rather than particles, every robot can
incorporate the communicated sensor data to calculate the likelihood of its
particle set.

Because of this, we decided to let every robot communicate every percept relation
(e.g., flag, ball) it has gathered to other robots.

Sensor Model. For the sensor model, we measured the standard deviation σl

by letting a robot take multiple images of certain scenes: a ball, a flag, a goal
and combinations of it. The standard deviation of distance differences and re-
spectively angle differences of objects in the image relative to each other were
measured as well. The robot was walking the whole time on the spot to get more
realistic, noisy images. The experiment results are shown in table 1.

It can be seen that the standard deviation for the distance from the ball to
the flag (or goal) is smaller than the sum of the distance errors given a ball and
a flag (or goal). The same can be said for the angle standard deviation. This
gives evidence that the sensor error for percepts in the same image is correlated,
due to walking motions and head swings.

4 Experimental Results

The Aibo ERS-7 robot serves as a test platform for our work. In our experiment,
two robots try to localize and to model the ball in an egocentric model. As a result
each robot maintains a particle distribution for possible ball positions, resulting
from self localization belief and the locally modeled ball positions. In the next step
the two robots communicate their particle distribution to each other (or a part of
it). After communication each robot creates a new particle cloud as a combination
of its own belief (the own particle distribution) and the communicated belief (com-
municated particle distribution). We want to check how this algorithm performs
in contrast to our presented algorithm in situations, where self localization is not
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a) b)

Fig. 2. Experiment with two flags: a) no percept relations communicated, the robots
are self localizing (arrows show SL-particles of the upper robot schematically), the ball
positions (cloud of dots) are modeled egocentric, transformed into global coordinates,
then communicated to the other robot and merged with its ball particle distribution.
b) No self localization needed, percept relations used as described, two robots commu-
nicating object relations for calculating the particle distribution; the small circle at the
center line marks the real ball position in the given experiment.

possible, e.g., when every robot can only see one landmark and the ball. We placed
both robots in front of a different landmarks with partially overlapping fields of
view, such that both robots could see the ball (Fig. 2).

One can see from the experiments that there is almost no convergence to a
confined area for the case in which the two robots are communicating their par-
ticle distributions to each other. In case of percept communication, the particle
distribution converges nicely to a confined area.

5 Conclusion

Object relations in robot images can be used to localize objects in global co-
ordinates. Without having to be localized at all, it can accurately estimate the
position of an object within a map of its environment using nothing but object
relations. Furthermore, we were able to show how the process of object local-
ization can be sped up by communicating object relations to other robots. Two
non-localized robots are thus able to both localize an object using their sensory
input in conjunction with communicated object relations.

Future Work. Future work will investigate the use of other landmarks (e.g.,
field lines) for object localization. An active vision control is currently being
developed to gain more images containing object relations, e.g., looking at the
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ball and landmarks at once if possible. Furthermore, we will investigate how data
about commonly modeled objects in field coordinates, e.g., the ball can be used
for self localization.
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