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Abstract. In this paper we describe how a group of agents can commonly estimate the position of
objects. Furthermore we will show how these modeled object positions can be used for an improved
self localization. Modeling of moving objects is commonly done by a single agent and in a robo-
centric coordinate frame because this information is sufficient for most low level robot control and
it is independent of the quality of the current robot localization. Especially when many robots coop-
erate with each other in a partially observable environment they have to share and to communicate
information. For multiple robots to cooperate and share information, though, they need to agree on
a global, allocentric frame of reference. But when transforming the egocentric object model into a
global one, it inherits the localization error of the robot in addition to the error associated with the
egocentric model.

We propose using the relation of objects detected in camera images to other objects in the same
camera image as a basis for estimating the position of the object in a global coordinate system.
The spacial relation of objects with respect to stationary objects (e.g., landmarks) offers several
advantages: The information is independent of robot localization and odometry and it can easily
be communicated. We present experimental evidence that shows how two robots are able to infer
the position of an object within a global frame of reference, even though they are not localized
themselves. We will also show, how to use this object information for self localization. A third
aspect of this work will cope with the communication delay, therefore we will show how the Hidden
Markov Model can be extended for distributed object tracking.
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1. Introduction

As all of our work is related to concurrent processes of perception and communication, we believe it to
be a venerable contribution in memory of Zdzislaw Pawlak. We show how combination of individual
knowledge can be used to improve the knowledge for the case of robots.

Creating a common world model is crucial in multi robot environments especially when sensor ca-
pacity is limited and when cooperation between robots comes into play. Usually a robot is surrounded
by many objects with static or dynamic behavior. In the first case a key task of every multi robot system
is to localize the agents relative to the given environment which is useful for path planning or efficient
positioning. In case of dynamic objects very often the agent wants to know and to predict the state of the
object, most commonly the position, speed, orientation, etc. The task of estimating an objects position
as well as self localizing is made more difficult, whenever the robot has only a limited field of view like
when using normal camera. We will use the scenario of soccer playing robots (RoboCup) [8] for our
discussions.

In hybrid architectures [2] basic behaviors are often directly coupled to sensor data, e.g., the ball
percept when following the ball. When sensor capacity is limited, it is important to maintain a model
about the world. The world modeling task can be split into subtasks, one task, to estimate the robot’s
position is called self localization, another task, to estimate the position of an object of the environment
is called tracking. Bayesian filters, especially Monte Carlo Localization approaches, have become very
popular for robot localization [16] and tracking and whenever sensor data is imprecise and/or limited. In
[9] the knowledge of the robot about the world state - usually referred to as belief - subsumes its knowl-
edge about object positions and its knowledge about self localization in a Bayesian network [13][6]. The
advantages of such a model are obvious. By having a combined model for self localization and object
tracking the observer can to some extend infer from object positions to self localization information and
vice versa. But due to the curse of dimensionality the approach of putting everything in one model is
usually not tractable under realtime conditions. The state space becomes high-dimensional very quickly.

Usually for efficiency reasons the modeling task is split up into the object modeling and the self
localization task. Now to model an object within its environment, self localization information has to be
passed to the object modeling process. But when self localization is uncertain or jumpy, the object state
becomes jumpy as well. To overcome this limitation of self localization accuracy, object modeling ap-
proaches as in [4] tend to use an egocentric model for tracking a moving object (a ball) and an allocentric
model for self localization. Because egocentric models represent the object state from an agents point
of view, they are often called local model. In contrast to local models, allocentric models do not use the
perspective of certain agents, therefore being called global models.

Splitting up the state space into local and global models works quite nice for single agent systems, but
fails when communication with other agents is necessary. The locally represented information has then
to be transformed into global coordinates, to be communicated to the other agent and to be transformed
again into local coordinates of the second agent. It is obvious that small errors in the self localization of
one or both robots can have significant impacts on the usability of such communicated information.

Therefore, in this article we want to present a solution to the multi agent object tracking problem
by modeling objects in global coordinates from the start, while trying to stay independent from self
localization information and keeping the state space small. To achieve this we want to examine the
sensing process more closely. In feature based belief modeling, features are extracted from the raw sen-
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sor data. We call such features percepts and they correspond directly to objects in the environment
detectable in the camera images. There are different levels of percepts. Shapes in the robot image can
be named percepts, but at this stage it is not clear to the robot, where the corresponding objects can
be found in the robot’s environment. Therefore we use further sensor data of the robot’s neck and leg
angles to calculate the object positions in coordinates relative to the robot. For a better understanding,
such a percept could have the form of, e.g., ball(100,200), referring to a ball within 100mm in front and
200mm to the left of the robot.

In a typical camera image of a RoboCup environment, the image processing could, for example,
extract the following percepts: ball, opponent player, and goal. Different percepts are then passed to dif-
ferent modules, e.g., the ball modeler receives (only) the ball percept. Percepts are commonly considered
to be independent of each other to simplify computation, even if they are used for the same purpose, such
as localization [14]. Using the distance of features detected within a single camera image to improve
Monte Carlo Localization was proposed by [7]: when two landmarks are detected simultaneously, the
distance between them yields information about the robot’s whereabouts.

When modeling objects in relative coordinates, using only the respective percept is often sufficient.
However, information that could help localize the object within the environment is not utilized. That is,
if the ball was detected in the image right next to a goal, this helpful information is not used to estimate
its position in global coordinates. We call seeing different percept within one image a percept relation.
We define a percept relation as a tuple of two objects, containing the distance and angle of the objects to
each other. Thus, for a percept relation, the observer’s position is not important anymore. Using percept
relations yields several advantages:

Sensing errors As the object of interest and the reference object are detected in the same image, the
sensing error caused by joint slackness or robot motion becomes irrelevant as only the relations of
the objects within the camera image matter. Thus the only remaining errors are those caused by
image processing.

Global localization The object can be localized directly within the environment, independent of the
quality of current robot localization.

Communication Using object relations offers an efficient way of communicating sensing information,
which can then be used by other robots to update their belief by sensor fusion.

1.1. Outline

We will show how relations between objects in camera images can be used for estimating the object’s
position within a given map and present experimental results. Our robots don’t have to be localized for
estimating the global position of an object which is in stark contrast to other approaches. Furthermore,
we will show how communication percepts can accelerate the modeling process in a group of robots.
Finally we will present how self localization can be improved by communication of percept relations
between different agents.
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2. Markov Localization

Markov Localization is an approach for estimating an object state. It uses Hidden Markov Models
(denoted HMM) - a statistical model where the system state being modeled is assumed to be a Markov
process with hidden/unknown parameters. Thereby the hidden parameters have to be inferred from the
observable parameters. It got its name by using the Markov assumption, i.e., for a current state estimation
only the last sensor data, input data and the last state estimation are necessary. Thus it is probabilisticly
independent from earlier sensor and input data. As the real world state is not observable but only some
output variables from the sensor data, it is called Hidden Markov Model. Fig. 1 shows main parts of
HMMs used for state estimation.

Hidden Markov Model

Figure 1. A Hidden Markov Model with input actions u and sensor data z. The object state x is hidden and must
be estimated by w and z. It shows, that z;; depends on z; and that x4 ; depends on uj and z; but not on any
other variable.

Markov localization methods, in particular Monte-Carlo Localization (MCL), have proven their
power in numerous robot navigation tasks, e.g., in office environments [5][3], in the museum tour guide
Minerva [15], in the highly dynamic RoboCup environment [10], and outdoor applications in less struc-
tured environments [12]. MCL is widely used in RoboCup for object and self localization [14][11]
because of its ability to model arbitrary distributions and its robustness towards noisy input data. It uses
Bayes law and Markov assumption to estimate an object’s position.

A Bayesian network is a form of probabilistic graphical model. It represents a set of variables to-
gether with a joint probability distribution with explicit independency assumptions. It is a directed,
acyclic graph with nodes representing variables, arcs representing probabilistic dependencies between
the variables and local probability distributions for each variable given values of its parents [1].

Terminology. We distinguish world model, world state, world belief, object model, object state and
object belief. A world model contains all parameters, necessary for a description of a robot’s environ-
ment. It also describes, how those parameters interact with each other and how they change over time.
E.g., the position of the robot and the position and speed of the ball could subsume in a world model.
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The model could also describe, that the speed of a rolling ball decreases over time. The world state is
the vector, containing all state variables of the world, e.g., robot position. Unfortunately the robot cannot
exactly know the world state, moreover it can only estimate the world state. The estimation of the world
state is called world belief. It can contain fixed positions of objects of the environment or probability
functions for representing uncertainty [16]. The definition for an object model are similar. An object
model describes all state variables of an object and how they change over time or interact with each
other, e.g., a velocity variable usually changes a position variable over time. The object state contains all
necessary state variables of the object in the robot’s environment. Again the robot can only estimate the
real parameters, its estimation is represented by the belief function.

We will describe, how we implemented a model for a group of robots localizing ball. The probability
distribution is represented by a set of samples, called particle set. Each particle represents a position
hypothesis, i.e., a vector containing the coordinates of a possible ball position. The current belief about
the object’s position is represented by the particle density, i.e., by knowing the particle distribution the
robot has knowledge about the most probable ball position. Thereby the belief function Bel(s;) describes
the probability for the object (e.g. ball) state s; at a given time ¢. Originally it depends on all sensor
inputs' 21, .., z; and all robot actions w1, .., u; as the next equation shows:

Bel(st) = p(St’Zt,ut—th—l,Ut—% ...,zl,uo,zo) (D

Bayes filters use the Markov assumption, which states that current measurements z; and executed
actions u; are independent from earlier measurements or actions when object state s; was given, as fig. 7
shows. With Bayes’ law:

p(Z]s)P(s)
Pel) ="y @)
(#12) p(Z)
where s is the object state and Z is the set of measurements, equation (8) can be written as:
Bel(st) = p(ztlst’ Ut—1, ..., U0, Zo)p(st|ut—1a ..y UQ, ZO) (3)

p(zt|ut—1a -eey UO, ZO)

We can further simplify this equation by using the Markov assumption, which makes the current
sensor data z; conditionally independent from earlier measurements z and actions w at a given object
state sy to:
p(ze|se)p(selui—1, ..., ug, 20)

Bel(st) = 4)
( t) p(zt’ut—la'“au()az())

By using the law of total probabilities the upper part of the fraction can be changed to:

Bel(st) = p(zlst) /p(5t|8t1, Up—1 s oery 20)P(St—1|Ut—2, ..., 20)dSt—1 (5)
p(zt|ut717 -y UQ, ZO)
With the Markov assumption we get:
Bel(sy) = p(zlse) / P(st|St—1, Su_1)Bel(sy—1)dsi—1 (6)
p(zt|ut71; -y U0, ZO)

'A sensor input z; contains a measurement vector, e.g., the ball coordinates of a seen ball.
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We use a normalizing constant 7 making sure that all probabilities sum up to 1 :

Bel(st) = np(ztISt)/p(st\St_l,su_1)Bel(St_1)dSt_1 (7)

Equation (7) is a recursive form of the Bayes filter, which enables us to recursively estimate an ob-
ject’s position. The equation can be split up into two equations, one for predicting the object state by
using data about the robot’s actions and another equation for incorporating sensor data into the estima-
tion:

Bel™ (st) «— /p(stlst_lut_l)Bel(st_1)d5t_1 (8)
—_———

process model

Bel(st) «— n p(zt|s:) Bel™ (st) )
——

sensor model

p(s¢|st—1u¢—1) describes the probability function for object state s, after having been in state sy
and performing action u;—;. E.g., when a robot is at position s;—; = (x,y) and it intended to walk
a certain distance u¢_1; = (d,d,), we get a probability for the next state p(s; = (x + dz, y + 5y)).
Equations (8) and (9) are also the basic functions of a common Bayes filter. Equation (8) shows how
the a-priori belief Bel™ is calculated from the previous belief Bel™ (s;—1). It is called a-priori belief
because it is the belief prior to the sensor data z;, therefore it also often referred to as prediction. If
we modeled the ball speed, in the prediction step we would calculate a new ball position, given the old
position plus the current speed and the passed time since the last state estimation. Also actions of the
robot, changing the ball state must be taken into account. But in our static situation nothing has to be
propagated, because the ball position is static and the robot is not interacting with the ball. Furthermore,
the ball position is modeled relatively to the field and not to the robot, which makes it independent from
robot motions. In (9) the a-priori belief is updated by sensor data z;, therefore called update step. The
term p(z|s;) defines the probability for a measurement z; given the object state s;. In our case the
probability function (sensor model) p(z:|s;) is Gaussian, this means we will most likely measure the ball
at the position, where it really is, but due to limited camera resolution our measurement is uncertain,
so we could measure it at other positions with a lower probability as well. Our update information
is information about object relations as described in section 3. Therefore the sensor model is needed,
telling the filter how accurate the sensor data are. The particles are distributed equally at the beginning,
then the filtering process begins. The main focus of our work is how the sensing process in a group of
robots can become more distributed, so at this stage we abstract from how a particle filter works in detail
and concentrate on how the sensor model of the particle filter can be extended.

3. Object Relation Sensor Modeling

Now we want to show, which kind of information can be gained from percept relations. Reference
domain will be the play field of the RoboCup Sony Four Legged League which is a highly dynamic
environment with moving and static objects, as fig. 2 shows. The whole field is color coded and includes
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Test Bed

Figure 2. The play field of the Sony 4-Legged League.

flags and goals for localization and an orange ball. As a robot we used the Aibo ERS-7 from Sony which
has a CCD camera with a horizontal opening angle of 55°.

3.1. Landmark Information

Fig. 3 a) and b) show two example images and below the information that can be gained regarding
possible ball positions (c and d). Seeing a ball and a flag at once results in a circular line for possible
ball positions, in case of seeing a ball and a goal the resulting curve forms a spiral. The resulting percept
relation includes the two angles to the flag or goal borders as well as the distance and angle to the ball.

In both cases one percept relation alone is not sufficient to exactly estimate the ball position on the
field. As a consequence one robot could overcome this limitation by scanning for further landmarks
standing in relation to the ball. But this could be time consuming, therefore communication with other
agents comes into play. The key idea is that a whole bunch of agents perceives more than one robot
alone. In the next section we will introduce an approach how to combine sensor readings from two or
more robots into one object modeling framework.

3.2. Line Information

Another method to localize objects on the play field is by using field lines. Although their detection
provides less information about the current positions because they are hardly distinguishable as long as
there are no line crossings, they provide useful information because they often can be seen from every
spot on the field. One possibility is, as fig. 4 shows, to use the distance of the ball to the line and compute
all possible positions on the field. This can be extended to finding line crossing or the middle circle.
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Information Gain from Robot Images

Figure 3. Single percept: a) a robot perceives a flag, i.e., the angle from left to right border of the flag in the
image , b) perceiving a goal, i.e., the angle between left and right goalpost - and in both images the angle and
distance to the ball

c) a flag and a ball let the robot determine the ball’s distance relative to the flag dy,; all possible positions of the
ball relative to the flag form a circle, d) the same calculation for a goal and a ball. The circular arc determines all
possible positions for the robot, the spiral arc represents all possible ball positions.

Now we have seen, which kind of information the robots perceive. In the next section we will
describe, how these data can be combined.

4. Sensor Combination in Multi Robot Systems

There are several methods to combine the knowledge of two or more robots. One method is to combine
the belief of the robots after the modeling (belief fusion) [4]. Another method is to communicate the
sensor data, i.e., the percept relations before the modeling (sensor fusion). We decided for the latter
approach because it yields several advantages as the next sections will show.
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Information Gain from Line Percepts

Soccer
Field :|:

: ‘Possible Ball
R i].i Positions. .. :

Figure 4. a) Shows a line and a ball. The robot can calculate the distance from the ball to the line d , as shown in
b) . But as lines are not distinguishable from each other, all positions on the field lying in a distance of d to a field
line are possible ball positions. c¢) Dotted points represent resulting possible ball positions in a distance of d to a
field line.

Probability Density Functions

Probability

Probability

S it

Position X

Figure 5. Probability distributions for the ball position - a) for one robot seeing a ball and a landmark. b) For two
robots, each seeing one landmark and the ball.

4.1. Sensor Fusion

Sensor Fusion means in our case, that both robots are communicating the percept relations before the
modeling. Later, all percept relations are incorporated into the modeling process equally, i.e., all percept
relations, also the communicated ones are used for the likelihood calculation of the particle set during
the update step of the particle filter. The advantage is, that percept relations are cheap to communicate
- in contrast to communicating particle distributions. An example for a scenario in which two robots
try to commonly model a ball position can be found in figure 5. As long as the situation is static,
communication delays have not to be considered. Otherwise, when the situation becomes dynamic, one
has to think about how to combine the sensor data of the different robots. In section 5 we will compare
both methods in experiments.
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Communication Delay

® | |1l

Figure 6. Effects of communication delay. White ball moving from right to left. Two agents (not in the diagram),
agent A sees the ball and flag A, agent B communicates its percept relation consisting of the ball and flag B. Gray
balls represent modeled ball positions with communication delay of 1, black balls represent modeled positions
resulting from a delay of 2.

4.2. Handling Communication Delays

When there are communication delays in dynamic situations the communicated information must be
assigned to the time when it has been perceived. Fig. 6 demonstrates the effect of to late arriving percept
relations.

Hidden Markov Models and Communication Delay

Figure 7. Robot b is sending its percept to robot A. a) no communication delays; b) communication delay e > 0.

We investigated, how delayed information can correctly be incorporated into the modeling process.
Therefore assume that the time delay is constant and that it takes e time steps for the the percept to get
from B to A. In case of e = 0 we get the Markov chain as in fig. 7. As a result, if one wants to model the
object state s; of time ¢, he has to wait until £ + e to get all sensor data from communicating agents.
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As an example we want to model model state s;1 .41 Wwith a given time delay of e > 0 time steps
and two robots A and B. Our solution is, to use state s;.1, where sensor information ZZ4+1 and zgl 18
available, to remember the belief, e.g., particle distribution of s;;; and then incrementally and a-priori
model state s}, 5, 57, 3, ..., until s, ., ; with just the sensor information z{il from A. In the next ¢ +e+2
step we receive sensor data thiQ from B, which we can use to revise the a-priori state estimation s}, 5.
Therefore we remembered the belief function from s;;. Now we continue as already described. We
call this method history revision. This approach allows incorporating communicated sensor data when
time delays are given. It is feasible for small communication delays. But if the communication delay
gets bigger the effort to revise the a-priori states from the past and to propagate them into the future gets
linearly bigger.

Two Robots Ball Modeling

a) b)
%
L g
A’k B
4 “f;«"l lesgo |
S8 1

Figure 8. Particle distribution as seen from robot A: a) B is communicating its ball particle distribution to A,
and A is adding it to its own distribution (small dots), the arrows indicate the self localization particle set from A;
b) both robots are interchanging percept relations, which are then used for ball state estimation, the ball particle
distribution from A converges to a small area.

5. Experiments

We conducted several experiments with the Aibo ERS-7 robot. As a representation of the object state
we chose a Particle Filter because of its ability to represent arbitrary distributions. In the first experiment
we placed both robots so that each one could see one flag only, thus being unable to self localize, and
a ball. As a result (see fig. 8) we could see that communicating percept relations led to a quick conver-
gence of the particle set, whereas just combining the two particle sets of the robots did not lead to any
improvement. On the contrary, the entropy about the ball position on the field even increased.
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Two Robots Ball Modeling
a) b)

Figure 9. Same experiment as before, now one robot sees a flag and the ball, the other one is seeing the goal and
the ball.

In experiment B we placed one robot in front of the goal, the other one in front of the flag (fig. 9).
Again, interchanging percept relations helped to let the particle set of the ball converge to a certain area,
whereas communicating particle distributions did not lead to any improvement of the state estimation.

Improving Self Localization by Using Ball Information
b)

N, o/
i
et
g

10

Figure 10. Same experiment as experiment A. Robot A uses its belief of the ball position to improve its self-
localization a) no improvement of self-localization belief (small arrows around the robot) when only communica-
tion ball particle distribution; b) communicating percept relations of the ball leads to convergence of the localization
particles (small arrows around the upper robot converged to one area)

In the last experiment we analyzed, how modeled objects could help a robot with its self localization.
The situation is the same as in the first experiment, but now the robot A is using its new belief about
the ball position for its own position estimation. Whereas in fig. 10 a) it was unable to accurately self

localize, by using percept percept relations and its belief about the ball position, fig. 10 b) shows, that its
localization belief also converged nicely.
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Conclusion

We introduced a new approach for multi-agent world modeling in dynamic environments. Percept rela-
tions enable robots to commonly estimate and communicate object positions, even if the robots are badly
self-localized. We presented an application example in the RoboCup environment. The given approach
is extensible from one to n robots. The experimental data show the advantages of using percept rela-
tions. We also discussed how Markov modeling can be extended to overcome the limitations of delayed
communication. Future work will investigate, how object relations can actively be searched for and how
this approach can be applied to not just single-object but multi-object tracking.
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