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Abstract. In this paper we describe how a group of agents can com-
monly estimate the position of objects. Furthermore we will show how
these modeled object positions can be used for an improved self localiza-
tion. Modeling of moving objects is commonly done by a single agent and
in a robo-centric coordinate frame because this information is sufficient
for most low level robot control and it is independent of the quality of
the current robot localization. Especially when many robots cooperate
with each other in a partially observable environment they have to share
and to communicate information. For multiple robots to cooperate and
to share information, though, they need to agree on a global, allocentric
frame of reference. But when transforming the egocentric object model
into a global one, it inherits the localization error of the robot in addition
to the error associated with the egocentric model.

We propose using the relation of objects detected in camera images to
other objects in the same camera image as a basis for estimating the
position of the object in a global coordinate system. The spacial rela-
tion of objects with respect to stationary objects (e.g., landmarks) offers
several advantages: The information is independent of robot localization
and odometry. It can be easily communicated. We present experimental
evidence that shows how two robots are able to infer the position of an
object within a global frame of reference, even though they are not local-
ized themselves. We will also show, how to use this object information
for self localization. A third aspect of this work will cope with the com-
munication delay therefore we will show, how the Markov Model can be
extended for distributed object tracking.

1 Introduction

In multi-agent systems for each robot it is important when performing a task to
model its environment, its own position within the environment, and the position
of other robots and moving objects. In RoboCup, the most important object to
track is, naturally, the ball. The task of estimating the position of an object
is made more difficult when it comes to the fact that the environment is only
partially observable to the robot.



In hybrid architectures [1], basic behaviors or skills, such as, e.g., following a
ball, are often based directly on sensor data, e.g., the ball percept. Maintaining
an object model becomes important if sensing resources are limited and a short
term memory is required to provide an estimate of the object’s location in the
absence of sensor readings.

A global model is used for communicating information to other robots [7], to
commonly model a ball by many agents with Kalman filtering [2] or to model
object-environment interactions [5]. In all cases, the global model inherits the
localization error of the observer.

We address this problem by modeling objects in allocentric coordinates from
the start. To achieve this, the sensing process needs to be examined more closely.
In feature based belief modeling, features are extracted from the raw sensor
data. We call such features percepts and they correspond directly to objects in
the environment detectable in the camera images. In a typical camera image
of a RoboCup environment, the image processing could, for example, extract
the following percepts: ball, opponent player, and goal. These percepts are then
each passed on to different respective modules, e.g., the ball modeler receives
(only) the ball percept. Percepts are commonly considered to be independent of
each other to simplify computation, even if they are used for the same purpose,
such as localization [6]. Using the distance of features detected within a single
camera image to improve Monte Carlo Localization was proposed by [4]: when
two landmarks are detected simultaneously, the distance between them yields
information about the robot’s whereabouts.

When modeling objects in relative coordinates, using only the respective
percept is often sufficient. However, information that could help localize the
object within the environment is not utilized. That is, if the ball was detected in
the image right next to a goal, this helpful information is not used to estimate
its position in global coordinates.

Therefore using the object relations derived from percepts that were ex-
tracted from the same image yields several advantages:

Sensing errors As the object of interest and the reference object are detected
in the same image, the sensing error caused by joint slackness, robot motion, etc.
becomes irrelevant as only the relation of the objects within the camera image
matters. (The sensing error is thus solely comprised of errors associated with
image processing.)

Global localization The object can be localized directly within the environ-
ment, independent of the quality of current robot localization. Moreover the
object position can be used by the robot for self localization.

Communication Using object relations offers an efficient way of communi-
cating sensing information, which can then be used by other robots to update
their belief by sensor fusion. This is in stark contrast to what is necessary to
communicate the entire probability density function associated with an object.



1.1 Outline

We will show how relations between objects in camera images can be used for
estimating the object’s position within a given map. We will present experimental
results using a Monte-Carlo Particle Filter to track the ball. Furthermore, we
will show how communication between agents can be used to combine incomplete
knowledge from individual agents about object positions, allowing the robot to
infer the object’s position from this combined data. In a further step we will
demonstrate how this knowledge about object position can be used to improve
self localization. We will extend the Markov Model to count for communication
delays.

Our experiments were conducted on the color coded field of the Sony Four
Legged League as well as on the MidSize Field (12m*8m) using the Sony Aibo
ERS-7, which has a camera resolution of 208 ∗ 160 pixels YUV and an opening
angle of only 55o.

2 Object Relation Information

In a RoboCup game, the robots permanently scan their environment for land-
marks as there are flags, goals, and the ball. We abstract from the algorithms
which recognize the ball, the flags, and the goals in the image as they are part
of the image processing routines. The following section presents the information
gained by each perception.

2.1 Information gained by a single percept

If the robot sees a two colored flag, it actually perceives the left and the right
border of this flag and thus the angle between those two borders. Because the
original size of landmarks is known, the robot is able to calculate its own distance
to the flag and its respective bearing (Fig. 2 a). In the given approach we don’t
need that sensor data for self localization, but for calculating the distance from
other objects as the ball to the flag.

If a goal is detected, the robot can measure the angle between the left and the
right goal-post. For a given goal-post angle the robot can calculate its distance
and angle to a hypothetical circle center, whereas the circle includes the two
outer points of the goal-posts and the point of the robot camera (Fig. 2 b).

If a ball is perceived, the distance to the ball and its direction relative to
the robot can be calculated. Lines or line crossings can also be used as reference
marks, but the sensor model for lines is more complex than for a goal or a flag as
there are many equally looking line segments on the field. For simplicity reasons
we didn’t use line information in the given approach.



Fig. 1. As testbed served the play field of the Sony 4-Legged League.
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Fig. 2. Two percepts in one image a) a flag and a ball let the robot determine the ball’s
distance relative to the flag dbl; all possible positions of the ball relative to the flag
form a circle, b) the same calculation for a goal and a ball. The circular arc determines
all possible positions for the robot, the spiral arc represents all possible ball positions.

2.2 Information gained by two percepts within the same image

If the localization object is visible together with another landmark, e.g., a flag or
a goal, the robot does not only get information about distances to both objects
but also information about the angle between them. With the law of the cosine
the distance from the ball to a flag can be calculated (Fig. 2 c).

When a goal and a ball were seen, a similar determination of the position
can be done for the ball, but the set of possible solutions leads to a spiral curve
(Fig. 2 d). Now we have shown how object relations can help to constrain the
set of possible ball positions. But we have also seen that one landmark and
one ball alone are not sufficient to exactly determine the ball’s position. One
possibility to overcome this limitation would be to scan for other landmarks and
take this information into account, but this could be time consuming. Another
approach would be to let the robots communicate and interchange the necessary
information for an accurate object localization. This has two advantages:



1. Apart from communication time which takes, in our case, about two or three
tenth of a second, information transfer between robots is cheap in resources,
as only few data needs to be transferred.

2. Many robots can gather more information than a single robot, because many
robots can see more than one robot.

Now we want to describe a possible implementation of this approach. As
the sensor data of our Aibo ERS-7 robot are not very accurate, we have to
cope with a lot of sensor noise. Furthermore, the probabilistic distribution is not
always unimodal, e.g., in cases where the observations lead to more than one
solution for possible ball positions. This is why a simple Kalman filter would
not be sufficient [5]. We chose an implementation using a Monte-Carlo Particle
Filter because of its ability to model multimodal distributions and its robustness
to sensor noise. Other approaches as Multi Hypothesis Tracking or Grid Based
algorithms might work also [3].

3 Sensor Combination in Multi Robot Systems

There are several methods to combine the knowledge of two or more robots.
One method is to combine the belief of the robots after the modeling (belief
fusion) [2]. Another method is to communicate the sensor data, i.e., the percept
relations before the modeling (sensor fusion). We decided for the latter approach
because it yields several advantages.

3.1 Sensor Fusion

Sensor Fusion means that both robots are communicating the percept relations
before the modeling. Later all percept relations are incorporated into the model-
ing process equally. The advantage is that percept relations are cheap to commu-
nicate - in contrast to communicating particle distributions, and they are easy
to merge. An example merge for a two robot scenario can be seen in figure 3.
Furthermore, in static situations a normal Bayes filter can be used. In contrast,
when communicating particle distributions, one has to think about how to com-
bine both. In the experiment section 4 we will compare both methods.

3.2 Handling Communication Delays

When there are communication delays in dynamic situations the communicated
information must be assigned to the time when it has been perceived. Fig. 4
demonstrates the effect of to late arriving percept relations.
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Fig. 3. Probability distributions for the ball position - a) for one robot seeing a ball
and a landmark. b) For two robots, each seeing one landmark and the ball.
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Fig. 4. Effects of communication delay. White ball moving from right to left. Two
agents (not in the diagram), agent A sees the ball and flag A, agent B communicates
its percept relation consisting of the ball and flag B. Gray balls represent modeled
ball positions with communication delay of 1, black balls represent modeled positions
resulting from a delay of 2.

We investigated how delayed information can correctly be incorporated into
the modeling process. Therefore we assume that the time delay is constant and
that it takes e time steps for the the percept to get from B to A. In case of
e = 0 we get the Markov chain as in fig. 5. As a result, if one wants to model
the object state st of time t, he has to wait until t+e to get all sensor data from
communicating agents.

As an example we want to model model state st+e+1 with a given time delay
of e > 0 time steps and two robots A and B. Our solution is, to use state st+1,
where sensor information zA

t+1 and zB
t+1 is available, to remember the belief, e.g.,

particle distribution of st+1 and then incrementally and a-priori model state
s∗t+2, s∗t+3, ..., until s∗t+e+1 with just the sensor information zA

t+1 from A. In the
next t+e+2 step we receive sensor data zB

t+2 from B, which we can use to revise
the a-priori state estimation s∗t+2. Therefore we remembered the belief function
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Fig. 5. Robot b is sending its percept to robot A. a) no communication delays; b)
communication delay e > 0.

from st+1. Now we continue as already described. We call this method history
revision. This approach allows incorporating communicated sensor data when
time delays are given. It is feasible for small communication delays. But if the
communication delay gets bigger the effort to revise the a-priori states from the
past and to propagate them into the future gets linearly bigger.

3.3 Monte-Carlo Localization, Implementation

Our hypotheses space for object localization has two dimensions for the position
q on the field. Each particle si can be described as a state vector −→s i

−→s i =
(

qi
xt

qi
yt

)
(1)

and its likelihood pi.
The likelihood of a particle pi can be seen as the product of all likelihoods

of all gathered evidences [6], which means in our case that for all landmark-
ball pairs a likelihood is being calculated. From every given sensor data, e.g.,
a landmark l and a ball (with its distances and angles relative to the robot)
we calculate the resulting possible ball positions relative to the landmark l, as
described in section 2.2. The resulting arc will be denoted as ξl. We showed in 2.2
that ξl has a circular form, when l is a flag and a spiral form, when l is a goal. The
shortest distance δl from each particle −→s i to ξl is our argument for a Gaussian
likelihood function N (δ, µ, σ), where µ = 0 and with a standard deviation σ,
which is determined as described in the next section. The sensor model being
assumed to be Gaussian showed to be a good approximation in experiments.
The likelihood is being calculated for all seen landmarks l and then multiplied:

pi =
∏
l∈L′

N (δl, 0, σ) (2)

In cases without new evidence all particles get the same likelihood. After
likelihood calculation, particles are resampled.



Multi Agent Modeling. To incorporate the information from other robots, per-
cept relations are communicated to other robots. The receiving robot uses the
communicated percepts for likelihood calculation of each particle the same way
as if it was its own sensor data. This is advantageous compared to other ap-
proaches:

– Some approaches communicate their particle distribution, which can be use-
ful when many objects are modeled in parallel. But when, as in our exam-
ples, two robots only know the arcs or the circular function on which the
ball could be found, this would increase position entropy rather than de-
creasing it. Communicating whole particle sets can also be very expensive
in resources.

– By communicating percept relations rather than particles, every robot can
incorporate the communicated sensor data to calculate the likelihood of its
particle set. Thereby we get a kind of sensor fusion rather than Belief-fusion
as in case when particle distributions are communicated.

Because of this, we decided to let every robot communicate every percept relation
(e.g., flag, ball) it has gathered to other robots.

Sensor Model. For the sensor model, we measured the standard deviation σl

by letting a robot take multiple images of certain scenes: a ball, a flag, a goal
and combinations of it. The standard deviation of distance differences and re-
spectively angle differences of objects in the image relative to each other were
measured as well. The robot was walking the whole time on the spot to get more
realistic, noisy images. The experiment results are shown in table 1.
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Object Standard Deviation σ

Distance in mm σDst in mm σAng in Rad

Ball 1500 170 0.015

Flag 2000 273 0.019

Goal 2000 25 0.021

Flag- Ball-Diff. 500 196 0.008

Goal- Ball-Diff. 500 175 0.0054

Table 1. Object Distance Standard Deviations

be found, this would increase entropy rather than decreasing it. Communi-
cating whole particle sets with a 1000 particles, can be also very expensive
in resources.

– by communicating percept relations rather than particles, every robot can
incorporate the communicated sensor data to calculate the likelihood of its
particle set. Thereby we get a kind of sensor fusion rather than Belief-fusion
as in case when particle distributions are communicated.

That’s why we decided to let every robot communicate every percept relation
(e.g. flag, ball) he has gathered to other robots.

Sensor Model. For the sensor model we measured the standard deviation σl

by letting a robot take multiple images from certain scenes: a ball, a flag, a
goal and combinations of it. The standard deviation of distance differences and
respectively angle differences of objects in the image relatively to each other
were measured as well. The robot was walking the whole time on the spot to get
more realistically noised images. The experiment results are shown in table 1.

It can be seen, that the standard deviation for the distance from the ball to
the flag (or goal) is smaller than the sum of the distance errors given a ball and
a flag (or goal). The same can be said for the angle standard deviation. This
gives evidence that the sensor error for percepts in the same image is correlated,
due to walking motions and head swings. Because in our experiments we coped
with static situations only, we could abstract from network communication time
and the delay after which percept relations were received.

4 Experimental Results

The Aibo ERS-7 robot serves as a test platform for our work. We conducted
several experiments with our robots to measure the accuracy and the speed of
the given algorithm and to compare it to a reference algorithm. In the reference
algorithm two robots try to localize and to model the ball in an egocentric
model. As a result each of those robots gets a particle distribution for possible

It can be seen that the standard deviation for the distance from the ball to
the flag (or goal) is smaller than the sum of the distance errors given a ball and
a flag (or goal). The same can be said for the angle standard deviation. This
gives evidence that the sensor error for percepts in the same image is correlated,
due to walking motions and head swings. Because in our experiments we coped
with static situations only, we could abstract from network communication time
and the delay after which percept relations were received.



3.4 Self Localization

For self localization we used the algorithm described in [6]. We used a three
dimensional hypothesis space, two dimension for the field position of the robot
and one dimension for its orientation. As sensor update input data served the
angle to the goal posts and to the flag boundaries as in [6], plus in our approach,
the distance and angle to the modeled ball.

4 Experimental Results

We will conduct experiments to investigate how the extended Markov Model can
be used for an accurater object modeling not only of static but also of dynamic
objects. We will also show, how object relations can be used for distributed
object tracking.

The Aibo ERS-7 robot serves as a test platform for our work. We conducted
several experiments with our robots to measure the accuracy and the speed of the
given algorithm and to compare it to reference algorithms. In the first reference
algorithm, two robots try to localize and to model the ball in an egocentric
model. As a result each robot maintains a particle distribution for possible ball
positions, resulting from self localization belief and the locally modeled ball
positions. In our situation neither robot is able to accurately determine the ball
position (Experiment A,B). In the next step the two robots communicate their
particle distribution to each other. After communication each robot creates a new
particle cloud as a combination of its own belief (the own particle distribution)
and the communicated belief (communicated particle distribution). We want to
check how this algorithm performs in contrast to our presented algorithm in
situations, where self localization is not possible, e.g., when every robot can only
see one landmark and the ball. In our first experiment, we placed both robots
in front of a different landmarks with partially overlapping fields of view, such
that both robots could see the ball (Fig. 6).

One can see from the experiments that there is almost no convergence to a
confined area for the case in which the two robots are communicating their par-
ticle distributions to each other. In case of percept communication, the particle
distribution converges nicely to a confined area.

In the next experiment we put one robot in front of a flag and a ball and let
it try to localize. The next reference algorithm we used was the self localization
approach as described in [6]. As the robot could only see one landmark, the
particle distribution did not converge to a certain area, two circle like clouds
remained, one for the ball and one for the self localization particle distribution
(fig. 7 a). As one can see, accurate self localization was not possible. It was also
not possible in case for two robots not interchanging percept relations, because
the ball particle distribution did not converge as in fig. 6 a). But when we took
two robots and let them determine the ball position using percept relations, a
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Fig. 6. Experiment A - two flags: a) no percept relations communicated, the robots
are self localizing (arrows show SL-particles of the upper robot schematically), the
ball positions (cloud of dots) are modeled egocentric and then transformed into global
coordinates. The globally modeled ball particle distribution is then communicated to
the other robot, which merges the communicated distribution with its own ball particle
distribution. b) No self localization needed, percept relations used as described, two
robots communicating object relations for calculating the particle distribution; the
small circle at the center line marks the real ball position in the given experiment

robot can use its own distance and angle to the ball for improved self localiza-
tion. Fig. 7 b) shows that self localization could be improved when using percept
relation and the resulting ball position data. The lower entropy of the self lo-
calization particle distribution proves quantitatively, that using position data
from objects modeled in allocentric coordinates can reduce uncertainty in self
localization (fig. 8).

5 Conclusion

Object relations in robot images can be used to localize objects in allocentric
coordinates, e.g., if a ball is detected in an image next to a goal, the robot
can infer something about where the ball is on the field. Without having to be
localized at all, it can accurately estimate the position of an object within a
map of its environment using nothing but object relations. Fu rthermore, we
were able to show how the process of object localization can be sped up by
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Fig. 7. Experiment C - Ball and robot localization: a) one robot is perceiving the ball
and self localizing by the upper flag. A circular particle distribution remains for the
robot positions (bigger circle) and the ball positions (smaller circle); b) two robots
localizing the ball with percept relations, the upper robot is robot.
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Fig. 8. The entropies for particle distributions of the self localization process (Experi-
ment C). The orange line shows the self localization entropy when no object relations
were used. Entropy decreases when perceiving the flag but remains at a high level; The
self localization entropy becomes much lower when using visual object relations for ball
modeling.

communicating object relations to other robots. Two non-localized robots are
thus able to both localize an object using their sensory input in conjunction
with communicated object relations. In a next step we showed how the gained
knowledge about allocentric object positions can be used for an improved Markov
self localization.

Future Work. Future work will investigate the use of other landmarks (e.g.,
field lines) for object localization. An active vision control is currently being
developed to gain more images containing object relations, e.g., looking at the
ball and landmarks at once if possible. Current work tries to extend the presented
approach to moving objects.
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