Fundamenta Informaticae 85 (2008) 1-16 1
10S Press

Memory-Based State-Estimation

Matthias Jiingel* and Heinrich Mellmann
Institut fiir Informatik

Humboldt-Universitdt zu Berlin

Unter den Linden 6, 10099, Berlin, Germany

mail @matthias-juengel.de; mellmann @ informatik.hu-berlin.de

Abstract. In this paper we introduce a state-estimation method that uses a short-term memory to
calculate the current state. A common way to solve state estimation problems is to use implementa-
tions of the Bayesian algorithm like Kalman filters or particle filters. When implementing a Bayesian
filter several problems can arise. One difficulty is to obtain error models for the sensors and for the
state transitions. The other difficulty is to find an adequate compromise between the accuracy of the
belief probability distribution and the computational costs that are needed to update it. In this paper
we show how a short-term memory of perceptions and actions can be used to calculate the state. In
contrast to the Bayesian filter, this method does not need an internal representation of the state which
is updated by the sensor and motion information. It is shown that this is especially useful when in-
formation of sparse sensors (sensors with non-unique measurements with respect of the state) has to
be integrated.

Keywords: State Estimation, Localization

1. Introduction

In this section we introduce what distinguishes our memory-based approach of state estimation (MBSE)
from the well known approach based on Hidden Markov Models (HMMs).

The purpose of state estimation is to find the best approximation to a state of a system. Usually this
state can not be observed directly. Assume that the state we want to determine is the position of a robot.
When there is a perfect position sensor available, there is nothing left to be done for state estimation.

*Address for correspondence: LFG Kiinstliche Intelligenz, Institut fiir Informatik, HU-Berlin, Unter den Linden 6, 10099
Berlin, Germany

2 M. Jiingel and H. Mellmann/Memory-Based State-Estimation

More generally there is no need for a sophisticated state estimation technique when there are sensors
which provide at least as much information as is needed to determine the position in every time step. [2]
Formally such Direct State Estimation can be seen as a function fp which calculates the current state 23
at time ¢ based on the vector Z; of observations at time ¢:

7y = fp(2t)

This direct form of state estimation does not use the knowledge about the actions u; which led the
system from state x;_; to state x;. Additionally the knowledge about probabilistic properties of the
sensors can not be used (unless there is a really large number of sensors measuring simultaneously). Fur-
thermore Direct State Estimation is not applicable when there are less sensors than needed to determine
the state directly.

These drawbacks are overcome by the Hidden Markov Model approach of state estimation [10, 11].
In this approach the current state is represented as a probability function bel(z;) which is called the belief
of x;. The current state is calculated by a function fr sy, which is usually realized by a variant of a
Bayesian filter using the belief of the last state bel(x;1), the current measurement z;, and the action u}
executed at the transition from x;” 1 to Z;:

IT; = fHMM(bel(l'til)y 2‘727@)

Bayesian filters can use probabilistic sensor and motion models and accumulate information over
time. Following the Markov Assumption this aggregation of information can be done from state to state
as long as the current state contains enough information. Therefore it is often referred as recursive state
estimation.

If we give up the assumption to have a representation of a complete state in each time step, we can
define a function f; which calculates the current state x; based on the current and all past observations
zo-+ and all past control actions ug.¢:

17;5 = fM(Z(_):tv U(?t)

Such variants of state estimation we will call Memory Based State Estimation (MBSE) [4]. Strictly
speaking Direct State Estimation is a variant of MBSE which only uses the current observation. Hidden
Markov Model based state estimation can also be seen to be a variant of Memory Based State Estimation.
In this case the function fj; has to calculate all recursion steps of function frarps in each time step
(which would break the idea of recursion). There are already some memory-based extensions for the
classical localization methods [6, 9, 1, 8]. In this paper we want to change the paradigm towards using a
memory-based approach to solve the state estimation problem for scenarios with sparse senor readings.

While the concept of Memory Based State Estimation introduced above is nothing more than a pro-
totype, in this article we will give a more detailed template for MBSE which can be used to solve a wide
class of state estimation problems.

Section 2 gives our motivation to do memory based state estimation, section 3 introduces the for-
malisms we need to describe and argue about our system, section 4 describes the method itself, in
section 5 we present some algorithmic implementations, and in section 6 we show the results of the
experiments we conducted.

M. Jiingel and H. Mellmann/Memory-Based State-Estimation 3

2. Motivation

To explain our motivation to introduce Memory Based State Estimation we will have a look at an example
from the world of sailing. In any book about sailing, e.g. [7] you will find a description on how to
calculate a running fix. To do so you need a compass, a way to measure the distance you travel, and two
bearing measurements to a single landmark with known position. Then the calculation of the current
position (the position where the second observation was made) follows simple geometric considerations.

Let’s consider the three concepts of state estimation introduced in the previous section: The calcu-
lation of a running fix is not possible via Direct State Estimation as information has to be accumulated
over time. The calculation from the sailing book using simple geometry would fall into the class of
Memory Based State Estimation. Using a HMM-based approach is also possible. To do so we have to
determine two things: First a probabilistic sensor model which gives the expected compass and bearing
measurement for each possible position. And second a probabilistic motion model which describes the
probability to move from one position to another, given a certain action (where the action can be derived
from the measurement of moved distance). The rest is done automatically by the variant of the Bayesian
Filter we choose.

While the geometry-based approach is simple and straight forward, the HMM-based approach is
more general. For a lot of state estimation problems it is much easier to provide a sensor and a motion
model than to dive into geometric considerations which starts getting complicated when contradictory
information has to be processed. The HMM-approach can cope with that without additional efforts. On
the other hand the HMM-approach needs a complete representation of the current state. This has to be a
probability density function over the state space in order to be able to accumulate information over time.
While a complete discrete representation leads to high memory usage and high computational costs,
there are several solutions to reduce this complexity. Particle filters approximate the function using a set
of particles, Kalman Filters assume the function to be a multivariate normal distribution. However these
approximations have their weaknesses. For example a very high number of particles is needed when the
information that has to be integrated is sparse (does not provide a lot of information at once).

In this article we present a template for Memory Based State Estimation that combines advantages
from the HMM-approach and from geometric considerations. As in the HMM-approach, the sensor and
the motion model are the only information needed about the environment. Like in the geometry-based
approach no internal representation of the state is needed to calculate the state, this is done in one step
considering all data at once.

3. Definitions
In this section we introduce some vocabulary needed in the rest of the article.

3.1. Sensor and Motion Models

Definition 3.1. (Observation function)
An observation function f, gives the expected observation z for each state z:

z = fs(x)

4 M. Jiingel and H. Mellmann/Memory-Based State-Estimation

Definition 3.2. (Control function)
A control function f. describes the new state x; when the previous state was x; 1 and the action u; was
performed:

T = fc(%el, Ul)

Note that with these functions no probabilistic properties of the senors can be modeled. In the same
way only a deterministic effect of the control actions can be described.

Definition 3.3. (Inverse control function)
We require that the control function is invertible in the first argument such that we can define the inverse
of a control function £ !(z,u) with

x and

fo(f (@ u),u)
S (fe(m,u),u)

T

Of course in any real-world scenario there is noise in the motion (which makes the motion model
non-invertible), as well there is noise in the sensor readings. However, below we will define an algorithm
which does not consider noise in the motion model and does not consider systematic errors in the sensor
readings. In section 6 we show that the algorithm nevertheless can cope with large errors in the motion
(small kidnappings) and significant error in the sensor readings.

Definition 3.4. (Concatenated Controls) The concatenation of two controls u;u; is defined such that

fe(z,uiug) = fe(fe(x,ui), uj)

Note that concatenation usually is not commutative.
Proposition 3.1. f. 1 (z,uu;) = fo1(fo (@, uj), u;)

Definition 3.5. (Accumulated Controls)
For the reason of simplification we introduce the symbol v,,, to describe the concatenation of the last m
control actions:

Um ‘= Un—m+1; -+ Un

With this definition and proposition 3.1 it is easier to describe a sequence of previous states, given a
current state x,, and a sequence of controls u1, ..., u,, that led to this state:

Tpn—m = fc_l(CL‘n,Um)

Figure 1 visualizes the connection between 1y, ..., Uy and vy, ..., Up.

3.2. Hidden Markov Models

As mentioned in the introduction, Hidden Markov Models are the basis for many state estimation tech-
niques that are based on Bayesian filtering. Figure 1 shows such a model.
An important prerequisite are the probabilistic sensor model and the probabilistic motion model:

M. Jiingel and H. Mellmann/Memory-Based State-Estimation 5

Vn

Vo

V4

Figure 1. Hidden Markov Model. The states g, x1, ..., x,, are not directly visible. A state x; depends only on
state x;—1 and the control action u;. An observation z; depends only on the state x;. The nodes u and z,, are
shaded as in our considerations we always start with an observation (z) and end with a control (u,,). Additionally
the connection between the controls 1, ..., u,, and the accumulated controls v, ..., v, is visualized (v,,, is the sum
of the last m controls, which is the sum of all controls since u,,_n,+1, cf. Definition 3.5).

Definition 3.6. (Sensor model)
A sensor model is a probability density function p(z|x) which describes a sensor by predicting the
probability to measure z, given that the current state is x.

Definition 3.7. (Motion model)
A motion model describes the probability p(z;|x;—1,u) for the system to change from state x;_; to state
x;, given the control w.

With these definitions the recursive algorithm for Bayesian filtering can be given (The version we
show here can be found in [10]):
Algorithm 1: Discrete_Bayes_filter(p(X;—1 = xx), uy, 2t)
foreach % do
L P(Xe = xx) = D p(Xt = x| Xi1 = @4,) - p(Xp—1 = 24)
p(Xe = x) = 0 p(2e| Xy = xp) - p(Xt = 2)
return p(X; = xy)

This algorithm is shown here as we later want to compare our MBSE-variant to this HMM-approach.
4. Memory-Based State Estimation (MBSE)
This section describes the main principles and the basic math of our state estimation approach.

4.1. Organization of Memory

There are two types of information available. The sequence of sensor data and the sequence of control
data. These two types of information are organized in a memory. This memory is a matrix M with

6 M. Jiingel and H. Mellmann/Memory-Based State-Estimation

two columns and n rows. The first column is a vector 2' = (zg, 21, ..., 2,) that contains the sequence of
observations, the most current observation is z,. The second column is a vector 4 = (ug, u2, ..., u,) that
stores the according control data.

Thus each row is a tuple (z;, u;) that contains an observation and the control data at the time of the
observation. The number of rows in the matrix increases with every observation. To be able to process
more than one observation at the same time we allow a control action to be of type do-nothing.

4.2. State Estimation Using Least Squares

The whole process of memory based state estimation is based on the memory described above. In this
section we show what kind of information a single measurement delivers, what is known from a single
observation in the past, and what is known from all observations in the past.

4.2.1. Information Gain of a Single Measurement

Usually a single measurement does not provide enough information to determine the state. However, a
measurement z constrains the set of possible states according to the observation function defined in 3.1:

X, =(xeX: fs(x)—2=0)
We can also define a larger set based on an expected maximum error of ¢ in the measurement:
X = (@ € X : (fs(x) — 2)* < t?)

We can also define the likelihood for a state x as the mean squared error, defined by the difference
between the real and the expected measurement.

fil@) = (fo(z) = 2)°

Figures 2 and 3 show this function for selected examples.

4.2.2. Information Gain of a Past Measurement

When constraining the state based on information of a past measurement, the control actions since the
observation have to be taken into account. With the inverse of the control function defined in 3.2, we get
the set

Xow = (reX: fs(fgl(xvu)) —z=0)

of possible states (assuming perfect measurements and execution of controls). With the assumption of a
maximum error ¢, in the measurement, we can define a larger set

Xz (t) = (@ € X (fs(f (w,u0)) — 2)* < £2)

of possible states. And finally we can define a function that describes the likelihood for being in state x
after executing control action v and having made the observation z in the beginning:

fol@) = (fo(f (z,)) — 2)

This likelihood is given by the squared difference between the real measurement and the expected mea-
surement in the state f. ! (z, u) calculated from z using the inverted motion model.

2

M. Jiingel and H. Mellmann/Memory-Based State-Estimation 7

Figure 2. Information gain of a single measurement. White circle: position of the landmark. Black circle:
simulated position of the robot. a) Gray line: bearing measurement from the robot to the landmark. The squared
difference between the real and the expected bearing measurements to the landmark is shown by the visualization
of the function in the background: f(z,y) = (arctan(y; — y, ; — &) — o)® where « is the angle between north
and the bearing from the robot to the landmark. Note that bright areas stand for low values of the function and
dark areas for a high value. b) Gray circle: distance measurement from the robot to the landmark. The squared
difference between the real and the expected distance measurements to the landmark is shown by the visualization
of the function in the background: f1(z,y) = (v/(y1 — y)2 + (v, —)2 — d)? where d is the distance between the
robot and the landmark.

a)

Figure 3. Information gain of a single depth measurement. a) Map of the Baltic Sea. The black circle with
the small number shows the simulated position of the robot and the result of a single depth measurement (90m)
b) Function f(z,y) = (d(x,y) — s)? which shows the squared difference between the real and the expected
measurements for each location. The function d(x, y) delivers the depth for position (z, y) as stored in the map, s
is the depth measurement. Places with a small difference are shown bright.

8 M. Jiingel and H. Mellmann/Memory-Based State-Estimation

4.2.3. Information Gain of Multiple Past Measurements

To accumulate the information of multiple past measurements we define the function

fu(Z,4) := argmin D sl @n o)) = 20i)?
t=1

which calculates the state x with the least sum of squared differences between the real measurement
2n,—; and the expected measurement for all states f. ! (z, v;). Additionally the value of the minimum is a
measure how good the measurements fit. If all measurements are perfect, the minimum has a value of 0.
The more contradictions there are between the single measurements, the higher the value of the minimum
is. The shape of the function gives additional information on the contribution of single measurements to
the total result. How this can be used to filter out measurements with a low contribution is discussed in
section 5.2.

4.3. Properties of Memory-Based State Estimation

In this section we show, that the way to calculate the state using fy,(Z, @) as defined above produces the
same results as Bayesian filtering under the assumption that there is no error in the execution of actions
and Gaussian error in the sensor measurements.

Assumption 4.1. There is no error in the motion model:

17 f;l(xlwut) = Ty

X =X X? :,f[,“”u, =
p(X H X ir) {0, otherwise

Assumption 4.2. The sensor model has Gaussian error:
p(2| Xt = z) = N [fs(zx), 0] (2)

Theorem 4.1. Let & = wuq,...,u, be a sequence of controls and z' = 2, ..., 2,1 be a sequence of
according measurements. Then the state x,, = f,(Z,4) determined by MBSE is equal to the state
xp = arg maxy p(X; = xy) calculated by iterative Bayesian filtering when the assumptions 4.1 and 4.2
hold.

Proof:
Consider line 2 of algorithm 3.2

P(Xy=ax) =D p(Xy = ap| X1 = @i, w) - (X1 =).
i
Following the assumption that there is no random in the motion model:

17 fc_l(xkaut) =T

p(Xi ol ir) {O, otherwise

M. Jiingel and H. Mellmann/Memory-Based State-Estimation 9

we can eliminate the sum in the calculation and get:
P(Xy = xp) = p(Xyo1 = [(g, ur))
Substitution in line 3 of algorithm 3.2
p(Xe = x) =0 - p(2]| Xy = xp) - p(Xy =)
gives
P(Xt = $k) =0 'p(Zt\Xt = iUk) 'p(thl = fc_l(xk,ut))
The iteration of n observations and controls results in
P(Xn=2k) = N1 -Mn-2- .. N1
p(zn—lan—l = fc_l(xka un)) 'p(zn—Q‘Xn—Q = fc_l(xkaun—lun)) :
p(Xo = fo (@, uruz...uy))

= p(Xo = f @k, vn) - [p (il Xi = £ (g, 00))
i1

using definition 3.4. The first term! and the 7; can be joined to a constant (; resulting in:

n

p(Xn =1z) =Gt Hp(2n4|Xi = fo (@, 01))
i=1

Since In is a strictly increasing function, it holds true

arg mkaxp(Xn = 1}1) = arg max In(p(X,, = z))

thus we can deduce

n
arg mgxp(Xn = 1)) = arg max <ln C1+ Zlnp(znfi]Xi = f,;_l(l“kwi)))

i=1

According to the Assumption 4.2 it holds true

p(z]z) = U\}% exp (-; <Z — §5($)>2>

(=52) e

which implies

Inp(ele) = —

Applying this, we finally get
n
. - 2
arg masp(X, = rp) = argmin) 1} (fol 7 ons 03)) — 2nmi)
1=

which is exactly the formula from section 4.2.3. O

'"The term p(Xo =) describes the a-priori probability distribution of the robot-state. At this point we assume that the initial
state of the robot is unknown and thus uniformly distributed, which implies that p(Xo =) is a constant for all z.

10 M. Jiingel and H. Mellmann/Memory-Based State-Estimation

Figure 4. Stepwise Grid Refining. The global minimum of the function is found using a grid. The spacing of the
grid is reduced in several steps.

5. Algorithmic Variants of MBSE
Calculating

fM(Z; ﬁ) = arg mlcan(fs(fgl('xk’ Ut)) - Zn—t)2
t=1

can be done in several ways. In this section we show a few of them. Some of the methods reduce the
number of states when looking for the minimum. Other variants reduce the number of measurements
that have to be incorporated.

5.1. Reducing the number of Locations

In this subsection we discuss several ways to reduce the number of locations for which the function f(x,y)
has to be calculated.

Stepwise Grid Refining This method calculates the function only for positions (x, y) that are located
on a grid with a spacing of d. The value of d has to be chosen depending on the domain in a way such
that there is always a grid point close to the real minimum of the function. The algorithm finds the grid
cell with the minimal value of the function. This grid cell is used to define a new grid around this cell
with a smaller spacing. This process is repeated until the desired precision of the position is determined.
Figure 4 shows an example.

Gradient Descent The minimum of the function can also be found using the gradient descent method.
Parameters for the algorithm like number of iterations and step length have to be chosen depending on
the domain. Figure 5a) shows an example.The gradient descent algorithm might have the problem to
run into local minima. However, once the true minimum was found (for example using the stepwise
grid refining method described above), choosing this position as starting position in the next step should
prevent the algorithm from switching to the wrong local minimum.

Gradient Descent with Multiple Starting Points Another way to solve the problem of local minima
is to select a set of starting positions and run the gradient descent method for each of these positions. The

M. Jiingel and H. Mellmann/Memory-Based State-Estimation 11

b)

Figure 5. a) Gradient Descent. The function in the background results from combining three bearing measure-
ments to the landmark (white rhombus). As there is only one local and global minimum the gradient descent finds
the position of the robot (marked by the black circle). The line illustrates the path of the gradient descent. b)
Gradient Descent with Multiple Starting Points. To be sure not to end in a local minimum, gradient descent is
started at several positions. The function in the background results from combining three distance measurements.
The starting points are chosen by randomly selecting points out of the set X ., (;,) which contains all possible
positions taking only measurement s into account. The set of gradient descent runs finds all three local minima of
the function.

run that ends up in the lowest minimum can be considered to have found the global minimum. However,
some care has to be taken to select starting positions. We propose a way to choose starting positions
based on the knowledge obtained by the last measurement s. We define the set of starting positions as a
random subset of X, ,) ;.) (cf. 4.2.1) with a fixed number of elements, where z is the last measurement,
u the control action performed since that measurement, and ¢, the maximal expected measurement error.
The size of the set and the value of the threshold ¢, have to be chosen depending on the domain. This set
is expected to contain at least one position near the global minimum. Which is a good starting position
for gradient descent. Figure 5b) gives an example.

Dimension reduction In this section we show how the calculation can be simplified when the sensor
model fulfills special requirements. Let g(Z) be the sensor model which predicts a measurement for a
state vector ¥ = (z1, ..., Z,,) of dimension n. In section 4.2.2 we defined the function

F2() = (fs(fH (& i) — z)

which calculates the difference between the measurement and the expectation for a given state & for an
observation (z;, u;). Therefore the solution of equation

Zp = fs(fc_l(fv uz))

is a set of states & for whose elements the expectation is identical to the measurement. If we fix the
first n — 1 components of & and require the expectation to be identical with the measurement we get a
constraint for the component x,, of £ which we use to define the function

2

c((z1, ey Tn—1), 2iy W) := Tn.

Note that from our examples only the bearing world has a sensor model that can be used to define such
a function.

12 M. Jiingel and H. Mellmann/Memory-Based State-Estimation

Figure 6. Dimension Reduction in the bearing world. Three measurements were taken. The lines of black circles
show the result of the computation of function ¢(x, a, A) for several discrete values of « for each observation
(o, A). The light gray circles show the function &(z). The size of the gray circles visualizes function h(x). The
position zpes; With the smallest value of & is marked by the large dark gray circle. Figure 5 shows the function f
for the same experiment.

We use that function c to define a function

—c(z zl,uz))2

Mw

z:l

which gives for each partial state £ = (x1, ..., 2,—1) how good several observations (z;, u;) fit together.
The function ¢(Z) is defined as

k
E l‘ Z“UZ

With these functions we can estimate the position:

v — (argmin (h(Z)))
s ¢(argming (h(%)))

This increases the calculation speed as the dimension of Z is only n — 1.
In a 2-D world with bearing sensors we get

y=clz,a,A) =y — Ay — (2 —x — A) - tan(e)

where A, and A, are the components of A := f.(v;). Figure 6 visualizes functions ¢ and h for an
example.A detailed description of the dimension reduction for a three-dimensional example (position
and rotation) can be found in [3].

5.2. Reducing the number of Used Measurements

The second method to reduce the computational costs of the algorithm is to reduce the number of mea-
surements. So far we have no restrictions on the size of the memory, which means that the longer the
robot runs, the more information is processed.

M. Jiingel and H. Mellmann/Memory-Based State-Estimation 13

a)

Figure 7. Selecting observations based on their contribution. The figures show two examples. One from a bearing
measurement example and another one from a distance measurement example. The faded measurements were not
considered as they were marked to have a low contribution during the past run of the robot. Only the measurements
taken at the highlighted places are used to calculate the position.

Remove Old Measurements Removing older measurements is the obvious solution to this problem.
We tested and compared several strategies of selecting observations in [5] and showed that with the right
strategy there is almost no loss of information.

Remove measurements with a low contribution In this section we want to motivate an observation
selection strategy based on the contribution of a measurement. First we define a function which calculates
the direction of the steepest decent of function f at position x

o(%, M) = max {Vf(7 +y, M)}

Note that this function can also be applied to a local extremum as for the steepest decent is searched at
all locations & + ¢ with a distance of € to Z. With that we define the contribution of a set of observations
N with respect to all observations M as the angular difference between the directions of the steepest
decent.

a(mbest, M) i a(‘rbesh N)

c(N,M):=1-—
() |a($bestaM)| : ’a(xbestaN”

where xpes; = argmin,, f(x, M). For practical reasons € should be greater than the difference between
the real minimum and the estimated minimum xp.; of the function f.

The function ¢(NN, M) that calculates the contribution can be used to define selection strategies for
observations. The simplest one is to keep the number of elements in N fixed and as soon as a new
observation is made, the observation with the lowest contribution is deleted. Figure 7 shows the result of
this strategy for experiments with bearing and distance sensors in a 2-D world.

6. Experiments

To test and demonstrate the method of state estimation we chose a self-localization scenario from RoboCup.
The experiments we conducted are described in this section.

14 M. Jiingel and H. Mellmann/Memory-Based State-Estimation

a) b)
. ° . >
N
6 + + +) 0 <
s © P
+ + + 9 & 3 » ’
>
8)
+ 6 + & " &
©) d)
+ 9 + + 9 +
e ® e L3
~—— <« e
. /2] :\/u,%_ % (%)
+ . + + \6'\..‘(\‘ + +
(%) i n
(3 & A
+ + + ! + + + ,
R s P G R . > 3 S .

Figure 8. Experimenal results. a) The artificial landmarks of a RoboCup field. Circles: unique markers for
horizontal bearing measurements (center beacons, goal posts). Small crosses: Intersections of field line (not
distinguishable). b) Dashed line: The true path the robot took in simulation, starting in the left bottom corner; Solid
line: result of localization based only on the knowledge about the effect of actions. Note that the result gradually
drifts away from ground truth due to the noise added to the motion model and do to the small kidnappings. Circles
with arrows along the solid line: Poses where the robot was kidnapped randomly (simulating charging by other
robots). ¢) Solid line: result of MBSE-localization using all perceptions. d) Solid line: result of MBSE-localization
using only the last perceptions of each type of landmark.

6.1. Experimental Setup

Our testing scenario was bearing-only localization [5, 4] on a RoboCup field. In this case the only mea-
surements the robot is able to use are horizontal bearings to landmarks. There are six unique landmarks
(the two goal posts of each goal and the center beacons) and fourteen ambiguous landmarks (intersec-
tions of field lines). The setup of landmarks is shown in figure 8a). All tests were done in simulation
which enabled us to compare the results of localization to true positions. Like on a real robot, in simu-
lation the bearing sensors had a limited field of view (60 degrees) and an Gaussian error with a standard
deviation of 6 degrees. The motion model we used had an error of 10 percent of the amount of the action
in all three dimensions (X, y, rotation). This error causes the dead-reckoning robot position to drift away
from ground truth (see figure 8b). Additionally we added small kidnappings as they appear regularly in
RoboCup games when robots collide. To test self-localization we made the robot follow a virtual ball
that was moved around on the field. Resulting in the path shown in figure 8b) and compared the results
to the ground truth position.

M. Jiingel and H. Mellmann/Memory-Based State-Estimation 15

Selection strategy Error in mm
motion only 277,4 + 183,4

all landmarks 52,3 +21,7

last 5 of each type of landmarks 25,7+ 19,8

Table 1. Experimental results. The selection strategies are denoted in the left column. The right column contains
the resulting averaged difference between the calculated position and the ground truth.

6.2. Experimental Results

To measure the quality of localization, we measured for each time step the difference between the esti-
mated pose found by our memory based approach and the ground truth position. We measured this for
three different scenarios. The first one is localization based only on motion data (initialized with the true
position in the first step). The second version used the complete history of measurements and executed
motions for position calculation. In the last experiment we used only the last observations of each type
of method. Results are depicted in table 1 and figure 8c,d).

As explained above, using only motion information leads to a drift of the estimated position leading
to a high deviation. Using all information still has this problem due to the kidnappings. Using only the
last information leads, as expected to the best results. However, due to the small amount of measurements
and due to the noise in this case the position is subject to small jumps.

7. Conclusion

In this paper we motivated and described Memory Based State Estimation (MBSE) which works on a
buffer of stored observations which contains the measurements as well as control data. We introduced
the mathematical prerequisites, the formal model and possible applications. The system is perfectly
suited to process sparse information which was shown in experiments. In future work we want to further
examine how the contribution and the knowledge about possible contradictions derived from the value
of the minimum of the likelihood function can be used to create observation selection strategies.

References

[1] M. Deans and M. Hebert. Experimental comparison of techniques for localization and mapping using a
bearingonly sensor, 2000.

[2] D. Gohring, K. Gerasymova, and H.-D. Burkhard. Constraint based world modeling for autonomous robots.
2007. Proceedings of the CS&P 2007.

[3] M. Jiingel. Bearing-only localization for mobile robots. In Proceedings of the 2007 International Conference
on Advanced Robotics (ICAR 2007), Jeju, Korea,, August 2007.

[4] M. Jiingel. Memory-based localization. 2007. Proceedings of the CS&P 2007.

16

(5]

(6]

(7]
(8]
(9]

[10]
[11]

M. Jiingel and H. Mellmann/Memory-Based State-Estimation

M. Jiingel. Self-localization based on a short-term memory of bearings and odometry. In Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2007), San Diego, October
2007. to appear.

S. Lenser and M. M. Veloso. Sensor resetting localization for poorly modelled mobile robots. In Proceedings
of the 2000 IEEE International Conference on Robotics and Automation (ICRA 2000), pages 1225-1232.
IEEE, 2000.

D. Seidman. The Complete Sailor - Learning the art of Sailing. International Marine, Camden, Me., 1995.
J. Sola, A. Monin, M. Devy, and T. Lemaire. Undelayed initialization in bearing only slam, 2005.

M. Sridharan, G. Kuhlmann, and P. Stone. Practical vision-based monte carlo localization on a legged robot.
In IEEE International Conference on Robotics and Automation, April 2005.

S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. MIT Press, Cambridge, Mass., 2005.

J. Wolf, W. Burgard, and H. Burkhardt. Robust vision-based localization for mobile robots using an image
retrieval system based on invariant features. In Proc. of the IEEE International Conference on Robotics and
Automation (ICRA), 2002.

