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Summary. Modeling the environment is crucial for a mobile robot. Common ap-
proaches use Bayesian filters like particle filters, Kalman filters and their extended
forms. We present an alternative and supplementing approach using constraint tech-
niques based on spatial constraints between object positions. This yields several
advantages: a) the agent can choose from a variety of belief functions, b) the com-
putational complexity is decreased by efficient algorithms. The focus of the paper
are constraint propagation techniques under the special requirements of navigation
tasks.

1.1 Introduction

Modeling the world state is important for many robot tasks. But usually
robots have a limited field of view, which makes it hard to acquire the whole
surrounding from one image. Bayesian filters [1] have been very successful in
solving this problem by incorporating sensor data over time. A very famous
member of the Bayesian filter family is the Kalman filter [2] using Gaussian
distribution functions. But many distributions can neither be processed by
a Kalman filter nor by one of its extensions. For non gaussian distributions
particle filters have become very popular. But the calculation of the sample
set can become very costly, making it inappropriate for real time applications.

Given an image of a scene, we have constraints between the objects in the
image and the objects in the scene. Object parameters, image parameters and
camera parameters are dependent by related constraints. Given odometry (or
control) data, subsequent positions are constrained by measured speed and
direction of movements. They can be combined with sensor measurements [3].

We have to deal with incomplete or with noisy measurements. With incom-
plete measurements, the result of constraint propagation will be ambiguous,
while noisy measurements may lead to inconsistent constraints. Related qual-
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ity measures have been discussed in our paper [4]. In this paper we discuss
constraint propagation methods for solving navigation problems.

The main difference to classical propagation is due to the fact that naviga-
tion tasks do always have a solution in reality. For that, inconsistencies have
to be resolved e.g. by relaxing constraints. Moreover, navigation tasks are not
looking for a single solution of the constraint problem. Instead, all possible
solutions are interesting in order to know about the ambiguity of the solution
(which is only incompletely addressed by particle filters). For that, the notion
of conservative propagation functions is introduced. It can be shown that this
notion coincides to some extend to the classical notion of local consistency
(for maximal locally consistent intervals).

The paper is structured as follows: Section 1.2 gives an introduction and an
example for description and usage of constraints generated from sensor data.
In Section 1.3 we present the formal definitions and the backgrounds for usage
of constraints. Basics of constraint propagation in the context of navigation
tasks are discussed in Section 1.4, and an efficient algorithm is presented.

1.2 Perceptual Constraints

A constraint C is defined over a set of variables v(1), v(2), ..., v(k). It defines
the values those variables can take:

C ⊆ Dom(v(1))× ...×Dom(v(k))

We start with an example from RoboCup where the camera image of a
robot shows a goal in front and the ball before the white line of the penalty
area (Figure 1.1). It is not too difficult for a human interpreter to give an
estimate for the position (xB , yB) of the ball and the position (xR, yR) of the
observing robot. Humans can do that, regarding relations between objects,
like the estimated distance dBR between the robot and the ball, and by their
knowledge about the world, like the positions of the goalposts and of the
penalty line.

The program of the robot can use the related features using image process-
ing. The distance dBR can be calculated from the size of the ball in the image,
or from the angle of the camera. The distance dBL between the ball and the
penalty line can be calculated, too. Other values are known parameters of the
environment: (xGl, yGl), (xGr, yGr) are the coordinates of the goalposts, and
the penalty line is given as the set of points {(x, bPL)| − aPL ≤ x ≤ aPL}.
The coordinate system has its origins at the center point, the y-axis points to
the observed goal.

The relations between the objects can be described by constraints. The
following four constraints are obvious by looking to the image, and they can
be determined by the program of the observing robot:

C1: The view angle γ between the goalposts (the distance between them in
the image) defines a circle (periphery circle).
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C2: The ball lies in the distance dBL before the penalty line.
C3: The distance dBR between the robot and the ball defines a circle such

that the robot is on that circle around the ball.
C4: The observer, the ball and the left goal post are on a line.

The points satisfying the constraints by C1 (for the robot) and by C2 (for the
ball) can be visualized immediately on the playground as in Figure 1.1.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Fig. 1.1. Example from RoboCup (Four legged league): A robot is seeing a goal
and the ball before the penalty line. The first Figure on left side illustrates the scene
from the view of the robot. The next three figures show the related constraints that
can be used for localization. Left: The picture shows a part of the field with the goal
and the white penalty line, the periphery circle according to C1, and the line of the
Ball-Line-Constraint C2. Middle: The picture shows the Constraint C2 for the ball,
some of the circles according to constraint C5, some of the lines according to C4,
and the resulting two lines for C6. Right: Constraints according to C7: The position
of the robot is one of the four intersection points between the periphery circle (C1)
and the lines according to C6.

The constraint by C3 does not give any restriction to the position of the
ball. The ball may be at any position on the playground, and then the robot
has a position somewhere on the circle around the ball. Or vice versa for
reasons of symmetry: The robot is on any position of the playground, and the
ball around him on a circle. In fact, we have four variables which are restricted
by C3 to a subset of a four dimensional space. The same applies to constraint
C4.

The solution (i.e. the positions) must satisfy all four constraints. We
can consider all constraints in the four dimensional space of the variables
(xB , yB , xR, yR) such that each constraint defines a subset of this space. Then
we get the following constraints:

C1 = {(xB , yB , xR, yR)| arctan
yGl − yR
xGl − xR

− arctan
yGr − yR
xGr − xR

= γ} (1.1)

C2 = {(xB , yB , xR, yR)|(xB ∈ [−aPL, aPL], yB = bPL − dBL} (1.2)

C3 = {(xB , yB , xR, yR)|(xB − xR)2 + (yB − yR)2 = d2BR} (1.3)

C4 = {(xB , yB , xR, yR)|xR − xB
yR − yB

=
xB − xGl

yB − yGl
} (1.4)
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Then the possible solutions (as far as determined by C1 to C4) are given
by the intersection

⋂
1,...,4 Ci. According to this fact, we can consider more

constraints C5, . . . , Cn as far as they do not change this intersection, i.e. as
far as

⋂
1,...,n Ci =

⋂
1,...,4 Ci . Especially, we can combine some of the given

constraints.
By combining C2 and C3 we get the constraint C5 = C2 ∩ C3 where the

ball position is restricted to any position on the penalty line, and the player
is located on a circle around the ball. Then, by combining C4 and C5 we get
the constraint C6 = C4 ∩ C5 which restricts the positions of the robot to the
two lines shown in Figure 1.1 (middle).

Now intersecting C1 and C6 we get the constraint C7 with four intersection
points as shown in Figure 1.1 (right). According to the original constraints
C1 to C4, these four points are determined as possible positions of the robot.
The corresponding ball positions are then given by C2 and C4.

1.3 Formal Definitions of Constraints

We define all constraints over the set of all variables v(1), v(2), ..., v(k) (even
if some of the variables are not affected by a constraint). The domain of a
variable v is denoted by Dom(v), and the whole universe under consideration
is given by

U = Dom(v(1))× · · · ×Dom(v(k))

For this paper, we will consider all domains Dom(v) as (may be infinite)
intervals of real numbers, i.e. U ⊆ Rk.

Definition 1. (Constraints)

1. A constraint C over v(1), ..., v(k) is a subset C ⊆ U .
2. An assignment β of values to the variables v(1), ..., v(k), i.e. β ∈ U , is a

solution of C iff β ∈ C.

Definition 2. (Constraint Sets)

1. A constraint set C over v(1), ..., v(k)is a finite set of constraints over
those variables: C = {C1, ..., Cn}.

2. An assignment β ∈ U is a solution of C if β is a solution of all C ∈ C,
i.e. if β ∈

⋂
C

3. A constraint set C is inconsistent if there is no solution, i.e. if
⋂
C = ∅

The problem of finding solutions is usually denoted as solving a constraint
satisfaction problem (CSP) which is given by a constraint set C. By our def-
inition, a solution is a point of the universe U , i.e. an assignment of values
to all variables. For navigation problems it might be possible that only some
variables are of interest. This would be the case if we are interested only in
the position of the robot in our example above. Nevertheless we had to solve
the whole problem to find a solution.
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In case of robot navigation, there is always a unique solution of the prob-
lem in reality (the positions in the real scene). This has an impact on the
interpretation of solutions and inconsistencies of the constraint system (cf.
Section 1.4).

The constraints are models of relations (restrictions) between objects in
the scene. The information is derived from sensory data, from communication
with other robots, or from knowledge about the world – as in the example
from above. Since information may be noisy, the constraints may not be as
strict as in the introductory example from Section 1.2. Instead of a circle we
get an annulus for the positions of the robot around the ball according to
C3 in the example. In general, a constraint may concern a subspace of any
dimension (e.g. the whole penalty area, the possible positions of an occluded
object, etc.). Moreover, constraints need not to be connected: If there are
indistinguishable landmarks, then the distance to such landmarks defines a
constraint consisting of several circles.

Other constraints are given by velocities: Changes of locations are re-
stricted by the direction and speed of objects. This means that a position
cannot change too much within a short time.

There are many redundancies which are due to all available constraints. Vi-
sual information in images usually contain lots of useful information: Size and
appearance of observed objects, bearing angles, distances and other relations
between observed objects, etc. Only a very small part of this information is
usually used in classical localization algorithms. This might have originated in
the fact, that these algorithms have been developed for range measurements.
Another problem is the large amount of necessary calculation for Bayesian
methods (grids, particles). Kalman filters can process such large amounts, but
they rely on additional presumptions according to the underlying statistics.

Like Kalman filters, the constraint approach has the advantage, that it
can simultaneously compute positions of different objects and the relations
between them. Particle filters can deal only with small dimensions of search
spaces.

For constraint methods, we have the problem of inconsistencies. According
to the noise of measurements, it may be impossible to find a position which
is consistent with all constraints. In our formalism the intersection of all con-
straints will be empty in such a case. Inconsistency in constraint satisfaction
problems means usually that there does not exist a solution in reality. But in
our situation, the robot (and the other objects) do have their coordinates, only
the sensor noise corrupted the data. Related quality measures for constraint
sets have been investigated in [4].

1.4 Constraint Propagation

Known techniques (cf. e.g. [5] [6]) for constraint problems produce successively
reduced sets leading to a sequence of decreasing restrictions
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U = D0 ⊇ D1 ⊇ D2,⊇ . . .

Restrictions for numerical constraints are often considered in the form of
k-dimensional intervals I = [a,b] := {x|a ≤ x ≤ b} where a,b ∈ U and the
≤-relation is defined componentwise. The set of all intervals in U is denoted
by I. A basic scheme for constraint propagation with

• A constraint set C = {C1, ..., Cn} over variables v(1), ..., v(k) with domain
U = Dom(v(1))× ...×Dom(v(k)).

• A selection function c : N→ C which selects a constraint C for processing
in each step i.

• A propagation function d : 2U ×C → 2U for constraint propagation which
is monotonously decreasing in the first argument: d(D,C) ⊆ D.

• A stop function t : N→ {true, false}.

works as follows:

Definition 3. (Basic Scheme for Constraint Propagation, BSCP)

Step(0) Initialization: D0 := U , i := 1
Step(i) Propagation: Di := d(Di−1, c(i)).

If t(i) = true: Stop.
Otherwise i := i+ 1, continue with Step(i).

We call any algorithm which is defined accordingly to this scheme a BSCP-
algorithm.

The restrictions are used to shrink the search space for possible solutions. If the
shrinkage is too strong, possible solutions may be lost. For that, backtracking
is allowed in related algorithms.

To keep the scheme simple, the functions c and t depend only on the
time step. A basic strategy for c is a round robin over all constraints from
C, while more elaborate algorithms use some heuristics. A more sophisticated
stop criterion t considers the changes in the sets Di. Note that the sequence
needs not to become stationary if only Di = Di−1. Actually, the sequence
D0, D1, D2, . . . needs not to become stationary at all.

For localization problems with simple constraints it is possible to compute
the solution directly:

Corollary 1. If the propagation function d is defined by d(D,C) := D ∩ C
for all D ⊆ U and all C ∈ C, then the sequence becomes stationary after
n = card(C) steps with the correct result Dn =

⋂
C.

For simpler calculations, the restrictions Di are often taken in simpler forms
(e.g. as intervals) and the restriction function d is defined accordingly.

Usually constraint satisfaction problems need only some but not necessar-
ily all solutions. For that, the restriction function d does not need to regard
all possible solutions (i.e. it need not be conservative according to definition
5 below). A commonly used condition is local consistency:
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Definition 4. (Locally consistent propagation function)

1. A restriction D is called locally consistent w.r.t. a constraint C if

∀d = [d1, ..., dk] ∈ D ∀i = 1, ..., k ∃d′ = [d′1, ..., d
′
k] ∈ D ∩ C : di = d′i

i.e. if each value of a variable of an assignment from D can be completed
to an assignment in D which satisfies C.

2. A propagation function d : 2U × C → 2U is locally consistent if it holds
for all D, C: d(D,C) is locally consistent for C.

3. The maximal locally consistent propagation function dmaxlc : 2U×C →
2U is defined by dmaxlc(D,C) := Max{d(D,C)|d is locally consistent}.

Since the search for solutions is easier in a more restricted the search
space (as provided by smaller restrictions Di), constraint propagation is often
performed not with dmaxlc, but with more restrictive ones. Backtracking to
other restrictions is used if no solution is found.

For localization tasks, the situations is different: We want to have an
overview about all possible poses. Furthermore, if a classical constraint prob-
lem is inconsistent, then the problem has no solution. In localization problem,
there does exist a solution in reality (the real poses of the objects under con-
sideration). The inconsistency is caused e.g. by noisy sensory data. For that,
some constraints must be relaxed or enlarged in the case of inconsistencies.
This can be done during the propagation process by the choice of even a larger
restrictions than given by the maximal locally consistent restriction function.

Definition 5. (Conservative propagation function)
A propagation function d : 2U×C → 2U is called conservative if D∩C ⊆

d(D,C) for all D and C.

Note that the maximal locally consistent restriction function dmaxlc is
conservative. We have:

Proposition 1. Let the propagation function d be conservative.

1. Then it holds for all restrictions Di :
⋂
C ⊆ Di.

2. If any restriction Di is empty, then there exists no solution, i.e.
⋂
C = ∅.

If no solution can be found, then the constraint set is inconsistent. There
exist different strategies to deal with that:

• enlargement of some constraints from C,
• usage of only some constraints from C,
• computation of the best fitting hypothesis according to C.

We have discussed such possibilities in the paper [4].
As already mentioned above, intervals are often used for the restrictions

D, since the computations are much easier. Constraints are intersected with
intervals, and the smallest bounding interval can be used as a conservative
result. Examples are given in Fig. 1.2.
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Fig. 1.2. Constraint propagation with intervals D for a) a circular constraint C b)
a rectangular constraint C. Intervals of Projection w.r.t. C ∩D are illustrated.

Definition 6. (Interval Propagation)

1. A propagation function d is called an interval propagation function if
the values of d are always intervals.

2. The minimal conservative interval propagation function dminc : 2U ×
C → I is defined by dminc(D,C) := Min{I|I ∈ I ∧D∩C ⊆ I)} for all D
and C.

The results by minimal conservative interval propagation functions can be
computed using projections.

Definition 7. (Interval of projection)
The (one-dimensional) Interval of projection w.r.t. to a set M ⊆ U

for a variable v is defined as the smallest interval containing the projection
Πv(M) of M to the variable v: Iv(M) = Min{I|I ⊆ R∧Πv(M) ⊆ I}. It can
be computed as I = [a, b] with a := Min(Πv(M)) and b := Max(Πv(M)).

Both, maximal local consistency and minimal conservatism leads to the
same results, and both can be computed using the projections (Figure 1.2):

Proposition 2.

1. dmaxlc(D,C) = dminc(D,C)
2. dminc(D,C) = Iv(1)(D ∩ C)× ....× Iv(k)(D ∩ C).

While local consistency is the traditional approach (to find only some
solutions), the approach with conservative intervals is more suited for local-
ization tasks because it can be modified w.r.t. to enlarging constraints during
propagation for preventing from inconsistency. In case of inconsistencies, the
algorithm below is modified accordingly in step 6. The related work is still
under investigation.

The following simple and practicable algorithm is used for propagation.
The stop condition compares the progress after processing each constraint
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once. Since stabilization needs not to occur, we provide an additional time
limit. Note that the step counting s is not identical to the steps i in the basic
scheme BSCP (but could be arranged accordingly).

Algorithm 1: Constraint Propagation with Minimal Conservative
Intervals, MCI-algorithm

Input: constraint set C = {C1, ..., Cn} with variables
V = {v1, ..., vk} over domain U and a time bound T

Data: D ← U , s← 1, Dold ← ∅
Result: minimal conservative k-dimensional interval D

1 while s < T & D 6= Dold do
2 Dold ← D;
3 foreach C ∈ C do
4 foreach v ∈ V do
5 D(v)← Iv(D ∩ C);
6 end
7 D ← D(v1)× · · · ×D(vn);

8 end
9 s← s+ 1;

10 end

1.4.1 Experimental Results

In our experiments within the RoboCup soccer domain (see section 1.2), we
compared a standard implementation of a Monte-Carlo particle filter with the
algorithm described above.

We used constraints given by fixed objects like goalposts, flags and field
lines identified in the images by the camera of the robot. It was easy to derive
the related constraints: distances to landmarks are defined by circular rings
in a generic form, where only the distances derived from the vision system of
the robot have to be injected. Constraints given by observed field lines are
defined by rectangles and angles, the distances and the horizontal bearings
are sufficient to define these constraints. All this can be done automatically.

While the particle filter used data from odometry, the constraint approach
was tested with only the actual vision data. Since we were able to exploit
various redundancies for the MCI, the accuracy of the results were comparable.

Our experiments showed that the MCI algorithm works several times faster
than a related particle filter. We performed experiments with a different num-
ber of particles. Even with very small sample sets (about 50 particles) the
computational costs for the MCPF were several times higher than for MCI. A
disadvantage of particle based approaches is that many particles are necessary
to approximate the belief which comes at high computational costs.

In further experiments we investigated more ambiguous data (i.e. when
only few constraints are available). In this case, the MCI provided a good
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estimation of all possible positions (all those positions which are consistent
with the vision data). The handling of such cases is difficult for MCPF because
many particles would be necessary. Related situations may appear for sparse
sensor data and for the kidnapped robot problem. Odometry can improve the
results in case of sparse data (for MCPF as well as with additional constraints
in MCI). But we would argue that the treatment of true ambiguity by MCI
is better for the kidnapped robot problem.

1.5 Conclusion

Constraint propagation techniques are an interesting alternative to probabilis-
tic approaches. From a theoretical point of view, they could help for better
understanding of navigation tasks at all. For practical applications they per-
mit the investigation of larger search spaces employing the constraints between
various data. Therewith, the many redundancies in images can be better used.
This paper has shown how sensor data can be transformed into constraints.
We presented an algorithm for constraint propagation and discussed some
differences to classical constraint solving techniques. In our experiments, the
algorithm outperformed classical approaches like particle filters.

The different strategies for dealing with inconsistencies have to be inves-
tigated in more detail. This will be done by connecting the results from this
paper with our results from [4]. In further work we will analyze constraint
based approaches for cooperative object modeling tasks as well as very dy-
namic situations with quickly changing object states.
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