
Project Paper

Realtime Object Detection on the NAO

Robot

Humboldt-University of Berlin

Department of Computer Science
Adaptive Systems Group

Anh Thu Nguyen
March 5, 2020

Declaration

I declare that this research project was composed by myself and that the work contained
therein is my own, except where explicitly stated otherwise in the text.

(Anh Thu Nguyen)

2

Contents

1 Introduction 4

2 Tiny-DSOD 5
2.1 Backbone . 5
2.2 Front-end . 8
2.3 Prediction Layer . 9

3 SqueezeDet 11
3.1 Backbone . 11
3.2 Prediction . 14

4 Experiment 17
4.1 Training and Results . 18

5 Conclusion 20

3

Introduction

The human visual cognition allows us to look at an image and instantly know which
objects are in the image, where they are and what they do. This skill enables us to
make decisions and perform complex tasks in real-time such as playing football. The
goal of a real-time object detection system is to enable a robot to do the same. How-
ever, many current object detection methods are focused on improving the detection
accuracy above all and are therefore very resource intensive. Those systems can not
operate on embedded devices like smartphones and robots such as the NAO. Those
devices have usually only very limited memory and computing capacities. Often they
are not equipped with a GPU. Therefore we need a real-time object detection system
which also works on a CPU with little memory usage.

In this work we will take a look at two state-of-the-art real-time object detection so-
lutions based on neural networks which are specifically designed for embedded devices
like the NAO robot. The first network is Tiny-DSOD by Li, Yuxi, et al., 2018[14] and
the second network is SqueezeDet by Wu, Bichen, et al., 2017[26]. We will analyze
both networks and try to fuse them in order to get an even better result than each
of the single networks. Afterwards we will evaluate the fused network on the dataset
KITTI[6]. Finally we will compare the result of the combined network with the results
of the original networks.

In section 2 and 3 we present the core ideas of Tiny-DSOD and SqueezeDet respectively.
Our experiment and results on the fused network are presented in section 4. Finally
we compare the results and conclude our work in section 5.

4

Tiny-DSOD

The network Tiny-DSOD by Li, Yuxi, et al.[14] is a lightweight object detector for
resource-restricted usages, which is trained from scratch. The architecture of Tiny-
DSOD is based on the Deeply Supervised Object Detection (DSOD)[20] framework
and consists of the depth-wise Dense Block (DDB) based backbone part and depth-
wise Feature Pyramid Network (D-FPN) based front-end part. On the Pascal VOC
2007 dataset the network achieves 72.1% mAP with only 0.95M parameters and 1.06B
FLOPs. For comparison Faster-RCNN has 134.70M and YOLO has 188.25M parame-
ters and achieve similar results on the same dataset.

2.1 Backbone

The backbone part of Tiny-DSOD is inspired by DenseNet[9]. The idea of DenseNet
is to exploit the potential of the network through feature reuse. These networks have
some advantages such as reduced number of parameters and no need to learn redun-
dant feature maps. DenseNet is divided into Dense Blocks, a group of connected layers
which contain batch normalization, ReLU and convolution layers. In these blocks, the
layers are densely connected together, which means that each layer receives all pre-
vious feature maps as input. Figure 2.2 shows one Dense Block in DenseNet. The
dimensions of the feature maps remain constant within a block and only the number
of filters changes. The growth rate defines the number of outputs. Consequently, the
growth rate regulates how much new information each layer contributes to the global
state. The layers between the blocks are called Transition Layers and take care of the
downsampling by applying batch normalization and pooling layers. Figure 2.1 presents
the pipeline in DenseNet with three Dense Blocks.

Figure 2.1: A deep DenseNet with 3 Dense Blocks.[9]

5

Figure 2.2: A 5-layer dense block with a growth rate of k = 4.[9]

Tiny-DSOD utilizes depth-wise Dense Blocks (DDB), which is a combination of the
Dense Block and the depth-wise Separable Convolution (S-CONV). It processes a nor-
mal convolution in two parts to increase the number of channels for the output. The
first part is depth-wise convolution and the second part is point-wise convolution. The
concept is shown in Figure 2.3. The main advantage is to transform the image only
once and not over and over again, thus computing power is reduced.

Figure 2.3: depth-wise Separable Convolution[24]

6

During the process of development of Tiny-DSOD two types of DDB units are intro-
duced: DDB-a and DDB-b. DDB-a is similar to the Bottleneck Residual Block from
MobileNet-v2[19], which contains an expansion 1x1 convolution layer, a 3x3 depth-wise
convolution layer and a linear 1x1 convolution layer. However, the DDB-a has two
main disadvantages: high complexity and redundancy among model parameters. To
mitigate these problems the DDB-b was introduced. This is shown in Figure 2.4, con-
taining only a 1x1 convolution layer and a 3x3 depth-wise convolution layer. DDB-b
is more efficient and accurate than DDB-a, which is verified in experiments from Li,
Yuxi, et al. in their paper[14], section 4.2. Moreover, the complexity of stacked DDB-b
blocks is smaller than the ones of DDB-a.

The growth rate g affects the resource consumption and therefore should be small.
However, small growth rate g has negative consequence on the discrimination function.
Tiny-DSOD adopts the variational growth rate strategy based on CondenseNet[8] by
allocating a smaller g to shallower stages with large dimension size, and increasing g
linearly when the stage goes deeper.

Figure 2.4: Illustration of the DDB with (a) is stacked DDB-a parameterized by growth
rate g and expand ratio w. (b) is stacked DDB-b parameterized by growth rate g. n is
the block input channel number, S means the stride of convolution and C means the
number of output channels. Numbers under the concatenating node (green C) means
the number of output channels after concatenation.[14]

The Table 2.1 shows the structure of the backbone with DDB-b(g). Each convolution
layer is followed by a batch normalization and a ReLU layer. In the extractor part there
are four dense stages, each stage containing several DDB-b blocks. For computing and
parameter efficiency each dense stage is followed by one transition layer, which fuses
channel-wise information from the last stage.

7

Module name Output size Component

Stem

Convolution 64 x 150 x 150 3 x 3 conv, stride 2
Convolution 64 x 150 x 150 1 x 1 conv, stride 1

Depth-wise convolution 64 x 150 x 150 3 x 3 dwconv, stride 1
Convolution 128 x 150 x 150 1 x 1 conv, stride 1

Depth-wise convolution 128 x 150 x 150 3 x 3 dwconv, stride 1
Pooling 128 x 75 x 75 1 x 1 conv, stride 2

Extractor

Dense stage 0 256 x 75 x 75 DDB-b(32) * 4

Transition layer 0 128 x 38 x 38
1 x 1 conv, stride 1

2 x 2 max pool, stride 2
Dense stage 1 416 x 38 x 38 DDB-b(48) * 6

Transition layer 1 128 x 19 x 19
1 x 1 conv, stride 1

2 x 2 max pool, stride 2
Dense stage 2 512 x 19 x 19 DDB-b(64) * 6

Transition layer 2 256 x 19 x 19 1 x 1 conv, stride 1
Dense stage 3 736 x 19 x 19 DDB-b(80) * 6

Transition layer 3 64 x 19 x 19 1 x 1 conv, stride 1

Table 2.1: Tiny-DSOD backbone with input 3 x 300 x 300. In the ”Component” col-
umn, the symbol ” * ” after block names indicates that block repeats number times.[14]

2.2 Front-end

The front-end part includes a lightweight FPN named depth-wise FPN (D-FPN), which
is based on the idea of the Feature Pyramide Network[15]. Figure 2.5 illustrates the
structure of the D-FPN structure, which consists of downsampling and upsampling.
The reverse-path upsampling has been demonstrated to be very helpful for small ob-
jects’ detection in many works, for example in Feature Pyramide Network[15], in Decon-
volutional Single Shot Detector (DSSD) [5] or in Context-Aware Single-Shot Detector
(CSSD)[27] and it is usually implemented by means of deconvolution with transposed
convolutional layer, which greatly increases the model complexity. To overcome this
problem, Li, Yuxi, et al. propose in Tiny-DSOD a cost-efficient solution, which is shown
in top-right of Figure 2.5. This operation could be formulated in the equation (2.1) as
follows:

Fc(x, y) = Wc ∗
∑

(m,n)∈Ω

Uc(m,n)τ(m, sx)τ(n, sy), (2.1)

where Fc is the c-th channel of the output feature map and Uc is the corresponding
channel of the input. Wc is the c-th kernel of depth-wise convolution and * denotes
the spatial convolution. W is the co-ordinate set of input features and s is the resam-
pling coefficient in this layer. τ(a, b) = max(0, 1− |a− b|) is the differentiable bilinear
operator.[14]

There is an uncertain point in the paper. As illustrated in Figure 2.5 the down- and
upsampling x2 is not fluently symmetric by starting with layer size 128 x 38 x 38. The
downsampling from 128 x 19 x 19 is 128 x 9 x 9. This conflict can be handle by using
different paddings.

8

Figure 2.5: The left part is the structure of D-FPN, while the right part further depicts
the details of the upsampling (top-right) and downsampling (bottom-right) modules in
D-FPN. Note that both samplings are by factor 2; S is the stride of convolution and C
is the number of output channels.[14]

2.3 Prediction Layer

The prediction layer was not explicitly described in the paper, but Tiny-DSOD is
inspired by Deeply Supervised Object Detector (DSOD)[20]. In their GitHub imple-
mentation [28] the authors confirmed that the code is based on the SSD and DSOD
framework. It was developed following the Single-Shot Detection (SSD)[16] framework.
However, DSOD and SSD have the same prediction method. SSD uses multi-scale fea-
ture maps to detect objects independently. After extracting a feature map n x m, SSD
applies 3 x 3 convolution filters to each cell, which results in k bounding boxes with
different sizes and aspect ratios. For each of the bounding boxes, c class scores and
four offsets relative to the original default bounding box shape are computed. Finally
SSD calculates (c + 4)k x n x m outputs for each feature map. The concept is shown
in Figure 2.6.

Figure 2.6: SSD: Multiple bounding boxes for localization (loc) and confidence
(conf)[16]

9

The loss function is formulated in equation (2.2) and consists of two terms: Lconf and
Lloc, where N is number of the matched default boxes.

L(x, c, l, g) =
1

N
(Lconf (x, c) + Lloc(x, l, g)) (2.2)

The localization loss Lloc is similar to the one in Faster R-CNN and comprise the
matched default boxes which is the smooth L1 loss between the predicted box (l) and
the ground-truth box (g) parameters . These parameters include the offsets for the
center point (cx, cy), width (w) and height (h) of the bounding box. Equation 2.3
shows the localization loss. [23]

Lloc(x, l, g) =
N∑

i∈Pos

∑
m∈cx,cy,w,h

xkij smoothL1(lmi − ĝmj) (2.3)

where ĝcxj =
gcxj − dcxi

dwi
ĝcyj =

gcyj − d
cy
i

dhi
ĝwj = log(

gwj
dwi

) ĝhj = log(
ghj

dhi
)

with smoothL1 =

{
11|x|if |x| > α
1
αx

2if |x| < α

L1 and L2 are two loss functions used to minimize the error. L1 loss function repre-
sents Least Absolute Deviations and L2 loss function represents Least Square Errors.
Smooth L1 loss behaves as L1 loss when the absolute value of the argument is high,
and it behaves like L2 loss when the absolute value of the argument is close to zero. α
is set to 1 by cross validation. [1]

The confidence loss Lconf which is the softmax loss over multiple classes confidences
(c). xpij = {1, 0} is an indicator for matching i-th default box to the j-th ground truth
box of category p.[23]

Lconf (x, c) = −
N∑

i∈Pos
(xpijlog(ĉpi))−

∑
i∈Neg

log(ĉ0
i) (2.4)

where ĉpi =
exp(cpi)∑
p exp(c

p
i)

10

SqueezeDet

SqueezeDet is a fully convolutional neural network for object detection that aims to
satisfy the following issues: high accuracy, extreme speed, small model size and good
energy efficiency. Inspired by YOLO[17] SqueezeDet is a single-stage detection pipeline
that does region proposal and classification of multiple objects within the image by one
single network. SqueezeDet is achieving the same accuracy as previous much larger
models. Its model size is 30x smaller than the Faster R-CNN+AlexNet model[12] and
the network consumes 84x less energy than the Faster R-CNN+VGG16 model[21]. The
more powerful version of the SqueezeDet is SqueezeDet+, which is 19.7x faster than
Faster R-CNN+VGG16.[26]. The architecture of SqueezeDet is based on two parts.
The first part is the backbone CNN SqueezeNet[10] with two additional layers to extract
the feature maps from input images. The second part is ConvDet1 to compute a large
amount of object bounding boxes called anchors and to predict their categories.

3.1 Backbone

The backbone CNN is selected by its model size and its energy efficiency structure.
SqueezeNet is based on fire modules, which allow to reduce the parameter size without
any significant accuracy loss. The fire module is shown in Figure 3.1 and contains a
squeeze layer and two parallel expand layers. The squeeze layer is an 1 x 1 convolution
layer and the expand layers is a combination of 3 x 3 and 1 x 1 filters, whose results
are concatenated.

Figure 3.1: Fire module in [10]

There are two implemented versions of the SqueezeNet architecture. The first one is
SqueezeNet and the second one is SqueezeNet+. Both versions were pre-trained on

1The ConvDet part is similar to the one of Region Proposal Network (RPN) in Faster R-CNN[18].

11

ImageNet[4], then two fire modules with randomly initialized weight on their top were
added. SqueezeNet has 4.72MB of model size and > 80.3% accuracy on ImageNet[4].
SqueezeNet+ is a more powerful SqueezeNet variation with 19MB of model size and
86.0% accuracy on ImageNet[4]. Tables 3.1 and 3.2 show layers details of the two back-
bones. Both backbones were connected to the ConvDet layer. The resulting networks
are named accordingly SqueezeDet and SqueezeDet+.

Module name Output size Component

Convolution 1 64 x 624 x 192 3 x 3 conv, stride 2

Pooling 1 64 x 312 x 96 3 x 3 max pool, stride 2

Fire Module 2 128 x 312 x 96
1 x 1 conv, stride 1, filters 16
1 x 1 conv, stride 1, filters 64
3 x 3 conv, stride 1, filters 64

Fire Module 3 128 x 312 x 96
1 x 1 conv, stride 1, filters 16
1 x 1 conv, stride 1, filters 64
3 x 3 conv, stride 1, filters 64

Pooling 3 128 x 156 x 48 3 x 3 max pool, stride 2

Fire Module 4
256 x 156 x 48

1 x 1 conv, stride 1, filters 32
1 x 1 conv, stride 1, filters 128

Fire Module 5 3 x 3 conv, stride 1, filters 128

Pooling 5 256 x 78 x 24 3 x 3 max pool, stride 2

Fire Module 6
384 x 78 x 24

1 x 1 conv, stride 1, filters 48
1 x 1 conv, stride 1, filters 192

Fire Module 7 3 x 3 conv, stride 1, filters 192

Fire Module 8
512 x 78 x 24

1 x 1 conv, stride 1, filters 64
1 x 1 conv, stride 1, filters 256

Fire Module 9 3 x 3 conv, stride 1, filters 256

2 Extra Layers:
768 x 78 x 24

1 x 1 conv, stride 1, filters 96
Fire Module 10 1 x 1 conv, stride 1, filters 384
Fire Module 11 3 x 3 conv, stride 1, filters 384

Table 3.1: SqueezeDet backbone with input 3 x 1248 x 384

12

Module name Output size Component

Convolution 1 96 x 618 x 185 7 x 7 conv, stride 2

Pooling 1 96 x 308 x 92 3 x 3 max pool, stride 2

Fire Module 2
128 x 308 x 92

1 x 1 conv, stride 1, filters 96
1 x 1 conv, stride 1, filters 64

Fire Module 3 3 x 3 conv, stride 1, filters 64

Fire Module 5 256 x 153 x 45
1 x 1 conv, stride 1, filters 192
1 x 1 conv, stride 1, filters 128
3 x 3 conv, stride 1, filters 128

Fire Module 6
384 x 153 x 45

1 x 1 conv, stride 1, filters 288
1 x 1 conv, stride 1, filters 192

Fire Module 7 3 x 3 conv, stride 1, filters 192

Fire Module 8 512 x 153 x 45
1 x 1 conv, stride 1, filters 384
1 x 1 conv, stride 1, filters 256
3 x 3 conv, stride 1, filters 256

Pooling 8 512 x 76 x 22 3 x 3 max pool, stride 2

Fire Module 9
512 x 76 x 22

1 x 1 conv, stride1, filters 384
1 x 1 conv, stride 1, filters 256
3 x 3 conv, stride 1, filters 256

2 Extra Layers:
512 x 76 x 22

1 x 1 conv, stride 1, filters 384
Fire Module 10 1 x 1 conv, stride 1, filters 256
Fire Module 11 3 x 3 conv, stride 1, filters 256

Table 3.2: SqueezeDet+ backbone with input 3 x 1242 x 375

13

3.2 Prediction

ConvDet layer is an Fw x Hh convolution layer, which is trained to output bounding
box coordinates and class probabilities. It is similar to the last layer of Region Proposal
Network (RPN) in Faster R-CNN, the difference being that it only generates region
proposals. The outputs are four numbers of the relative coordinates and one confidence
score. ConvDet can compute directly the detection output, such as bounding boxes,
and classify the object within it. Picture 3.2 shows the difference between the last
layer of RPN and ConvDet. In SqueezeDet and SqueezeDet+ ConvDet is applied to
SqueezeNet, but it can also be applied to other backbone CNNs like VGG16[21] or
ResNet50[7].

Figure 3.2: Last layer of Region Proposal Network (RPN) is an 1x1 convolution with
K x (4 + 1) outputs and ConvDet layer is an Fw x Hh convolution with K x (4 + 1 +
C) outputs. [26]

ConvDet works like a sliding window and computes K x (4 + 1 + C) outputs at each
position on the feature map. At each position there are K numbers of anchor boxes with
pre-selected shapes2. ConvDet computes for each k-th anchor four relative coordinates
and transforms the anchor to the new position and shape based on the ground truth
boxes. Figure 3.3 illustrates the bounding box transformation and Equation (3.1)
describes the transformation more formally.

xpi = x̂i + δxijk,

ypj = ŷi + δyijk,

wpk = ŵkexp(δwijk),

hpk = ŵkexp(δhijk)

(3.1)

Each k-th anchor can be described as (x̂i, ŷj , ŵk, ĥk), i ∈ [1,W], j ∈ [1, H], k ∈ [1,K],

where x̂i, ŷj is the coordinates of the grid center (i, j) and (ŵk, ĥk) are the width and the
height of the k-th anchor box. The four relative coordinates are (δxijk, δyijk, δwijk, δhijk)

2The anchor box shapes tailored to the dataset are selected with the approach in [2].

14

and xpi , y
p
i , w

p
i , h

p
i are the final predicted bounding box coordinates.

For each bounding box ConvDet calculates one confidence score and C conditional
class probabilities, where C is the number of classes. A high confidence score means a
high probability of an object from one of the desired classes. The results of the detec-
tion are transferred to the next stage in the pipeline of SqueezeDet (Figure 3.4) for the
filtering of the predicted bounding boxes.

Figure 3.3: Bounding box transformation[26]

ConvDet computes multiple bounding boxes surrounding the objects in the image.
To refine the predicted bounding boxes and calculate compact detection boxes, Non-
Maximum Suppression (NMS) is used. NMS is a common post-processing technique
for fusing all detections corresponding to the same object. NMS uses as input a list of
bounding boxes, their corresponding confidence scores and an overlap threshold. The
first step is to select the highest confidence score of the pre-prediction and pick that
value as the confidence score. The second step is the comparison of all pre-predictions
with the selected one and the calculation of the IOU. If the IOU is greater than the
threshold, that bounding box will be discarded from the list.[11]. After NMS processing
the final results of SqueezeDet are the top N bounding boxes with highest confidence
score.

Figure 3.4: SqueezeDet detection pipeline[26]

15

The loss function of SqueezeDet is formulated in Equation 3.2. The first part is the
regression of the scalars for the anchors. The second part is the confidence score
regression which uses IOU of ground and predicted bounding boxes. The third part is
the penalization of anchors which are not responsible for detection by dropping their
confidence score. The last part is the cross entropy.

λbbox
Nobj

W∑
i=1

H∑
j=1

K∑
k=1

Iijk[(δxijk − δxGijk)2 + (δyijk − δyGijk)2 + (δwijk − δwGijk)2 + (δhijk − δhijkG)2]

+
W∑
i=1

H∑
j=1

K∑
k=1

Iijk
δ+
conf

Nobj
Iijk(γijk − γGijk))2

+
γ−conf

WHK −Nobj
Īijkγ

2
ijk

+
1

Nobj

W∑
i=1

H∑
j=1

K∑
k=1

C∑
c=1

Iijkl
G
c log(pc)

(3.2)

where (δxijk, δyijk, δwijk, δhijk) are the relative coordinates of k-anchor
and δxGijk, δy

G
ijk, δw

G
ijk, δh

G
ijk are the coordinates of the ground truth bounding boxes

δGijk.

16

Experiment

After analyzing the two networks we take a look on both implementations from the au-
thors published on GitHub: SqueezeDet in [25] and Tiny-DSOD in [28]. As stated by
the authors of SqueezeDet, ConvDet can be applied to other backbone CNNs. Hence we
concluded that the architecture backbone from Tiny-DSOD can also be used instead of
SqueezeNet. Following this idea, we want to modify the implementation of SqueezeDet
by replacing SqueezeNet backbone with Tiny-DSOD backbone. The Figure 4.1 shows
the modified pipeline. SqueezeDet was implemented by its authors in Python 2.7 us-

Figure 4.1: The modified SqueezeDet detection pipeline

ing the TensorFlow 1.0 framework[25]. We downloaded and run the code in order to
reproduce the results from the paper. By using their pre-trained model of SqueezeDet
and SqueezeDet+ we could reproduce their results. We found another implementation
of SqueezeDet on Keras in GitHub [22], which is much simpler due to the removal of
redundant or unnecessary parts e.g. code for benchmarking against different architec-
tures. For our experiment we will use the implementation of SqueezeDet on Keras and
modify it with the backbone of Tiny-DSOD. For the training and the evaluation of our
combined network we will use KITTI dataset[6]. This dataset is composed of extremely
wide images of size 1248 x 384. To prevent small objects from vanishing, we keep the
size of the input image instead of 300 x 300 as in the original Tiny-DSOD backbone.
The modified backbone is shown in Table 4.1.

17

Module name Output size Component

Stem

Convolution 64 x 624 x 192 3 x 3 conv, stride 2
Convolution 64 x 624 x 192 1 x 1 conv, stride 1

Depth-wise convolution 64 x 624 x 192 3 x 3 dwconv, stride 1
Convolution 128 x 624 x 192 1 x 1 conv, stride 1

Depth-wise convolution 128 x 624 x 192 3 x 3 dwconv, stride 1
Pooling 128 x 312 x 96 1 x 1 conv, stride 2

Extractor

Dense stage 0 256 x 312 x 96 DDB-b(32) * 4

Transition layer 0 128 x 156 x 48
1 x 1 conv, stride 1

2 x 2 max pool, stride 2
Dense stage 1 416 x 156 x 48 DDB-b(48) * 6

Transition layer 1 128 x 78 x 24
1 x 1 conv, stride 1

2 x 2 max pool, stride 2
Dense stage 2 512 x 78 x 24 DDB-b(64) * 6

Transition layer 2 256 x 78 x 24 1 x 1 conv, stride 1
Dense stage 3 736 x 78 x 24 DDB-b(80) * 6

Transition layer 3 64 x 78 x 24 1 x 1 conv, stride 1

Table 4.1: The modified Tiny-DSOD backbone with input 3 x 1248 x 384.

4.1 Training and Results

For the training we kept the parameters from SqueezeDet on Keras for our combined
network. Therefore, the number of anchor boxes is K = 9, the number of top bounding
boxes is N = 64 and the threshold for dropout is 0.5. The input size is 1248 x 384 and
the batch size is 16. The 7381 training images from the KITTI dataset is randomly
split half into training set and half into validation set. We trained our model to detect
three categories of objects: cyclist, pedestrian and car.
We took the results of Tiny-DSOD and SqueezeDet from the original papers for our
comparison. In Table 4.2 we also added MS-CNN[3] and fire-FRD-CNN[13] to highlight
the size of the two small networks. Tiny-DSOD and SqueezeDet achieves a competitive
mAP result of 77.0% mAP and 76.6 % mAP, while both models have less than half of
parameters. It should be noted that Tiny-DSOD achieves the highest accuracy on the
category ”cars”, which are the main objects in the KITTI dataset.

The combined network achieves worse results in every class except cyclists, but with
significantly less parameters and therefore much higher inference time. It is impor-
tant to note that we trained the network for just 100 epochs due to time constraints.
We suspect that with more training and perhaps data augmentation we can achieve
comparable results to Tiny-DSOD with much less parameters.

18

Method Params FLOPs car AP cyclist AP pedestrian AP mAP

MS-CNN[3] 80M - 85.0 75.2 75.3 78.5
fire-FRD-CNN[13] 14M - 87.07 83.7 76.73 82.5

SqueezeDet[26] 1.98M 9.7B 82.9 76.8 70.4 76.7
SqueezeDet+[26] 6.71M 77.2B 85.5 82.0 73.7 80.4
Tiny-DSOD[14] 0.85M 4.1B 88.3 73.6 69.1 77.0

our Tiny-Det 774,344 1.613.730 69.1 96.2 29.3 64.87

Table 4.2: Results on KITTI 2D Object Detection (the models are trained on half
KITTI trainval and test on the other half)

19

Conclusion

Tiny-DSOD and SqueezeDet used different approaches with the common goal, an effi-
cient object detection network for less powerful systems like a NAO robot. While Tiny-
DSOD is focused on the problem of training object detector from scratch, SqueezeDet
focuses on the ConvDet layer, which is a convolutional layer that is trained to output
bounding box coordinates and class probabilities. The end-to-end training protocol of
SqueezeDet is universal and can work with various CNN architectures. Thus we com-
bined the two methods to create a new object detector with usable results and much
fewer parameters. In the future more experiments regarding hyper parameter tuning
and data augmentation should be done in order to see if we can get even better results
from such a small object detection network.

20

Bibliography

[1] 2018. https://stats.stackexchange.com/questions/351874/

how-to-interpret-smooth-l1-loss.

[2] Khalid Ashraf, Bichen Wu, Forrest N Iandola, Mattthew W Moskewicz, and Kurt
Keutzer. Shallow networks for high-accuracy road object-detection. arXiv preprint
arXiv:1606.01561, 2016.

[3] Zhaowei Cai, Quanfu Fan, Rogerio S Feris, and Nuno Vasconcelos. A unified multi-
scale deep convolutional neural network for fast object detection. In European
conference on computer vision, pages 354–370. Springer, 2016.

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee, 2009.

[5] Cheng-Yang Fu, Wei Liu, Ananth Ranga, Ambrish Tyagi, and Alexander C Berg.
Dssd: Deconvolutional single shot detector. arXiv preprint arXiv:1701.06659,
2017.

[6] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous
driving? the kitti vision benchmark suite. In 2012 IEEE Conference on Computer
Vision and Pattern Recognition, pages 3354–3361. IEEE, 2012.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[8] Gao Huang, Shichen Liu, Laurens Van der Maaten, and Kilian Q Weinberger.
Condensenet: An efficient densenet using learned group convolutions. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
2752–2761, 2018.

[9] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
Densely connected convolutional networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 4700–4708, 2017.

[10] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J
Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer pa-
rameters and¡ 0.5 mb model size. arXiv preprint arXiv:1602.07360, 2016.

[11] Sambasivarao. K, 2019. https://towardsdatascience.com/

non-maximum-suppression-nms-93ce178e177c.

21

[12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information pro-
cessing systems, pages 1097–1105, 2012.

[13] Wei Li, Kai Liu, Lin Yan, Fei Cheng, YunQiu Lv, and LiZhe Zhang. Frd-cnn:
Object detection based on small-scale convolutional neural networks and feature
reuse. Scientific reports, 9(1):1–12, 2019.

[14] Yuxi Li, Jiuwei Li, Weiyao Lin, and Jianguo Li. Tiny-dsod: Lightweight object
detection for resource-restricted usages. arXiv preprint arXiv:1807.11013, 2018.

[15] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and
Serge Belongie. Feature pyramid networks for object detection. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 2117–2125,
2017.

[16] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In
European conference on computer vision, pages 21–37. Springer, 2016.

[17] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 779–788, 2016.

[18] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In Advances in neural
information processing systems, pages 91–99, 2015.

[19] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 4510–
4520, 2018.

[20] Zhiqiang Shen, Zhuang Liu, Jianguo Li, Yu-Gang Jiang, Yurong Chen, and Xi-
angyang Xue. Dsod: Learning deeply supervised object detectors from scratch.
In Proceedings of the IEEE international conference on computer vision, pages
1919–1927, 2017.

[21] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[22] Omnius Engineering Team. Squeezedet on keras, 2018. https://github.com/

omni-us/squeezedet-keras.

[23] Sik-Ho Tsang. Review: Ssd — single shot detector (object de-
tection), November 2018. https://towardsdatascience.com/

review-ssd-single-shot-detector-object-detection-851a94607d11.

[24] Chi-Feng Wang. A basic introduction to separable con-
volutions, 2018. https://towardsdatascience.com/

a-basic-introduction-to-separable-convolutions-b99ec3102728.

[25] Bichen Wu. Squeezedet: Unified, small, low power fully convolutional neural
networks for real-time object detection for autonomous driving. GitHub, 2017.
https://github.com/BichenWuUCB/squeezeDet.

22

[26] Bichen Wu, Forrest Iandola, Peter H Jin, and Kurt Keutzer. Squeezedet: Unified,
small, low power fully convolutional neural networks for real-time object detection
for autonomous driving. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pages 129–137, 2017.

[27] Wei Xiang, Dong-Qing Zhang, Heather Yu, and Vassilis Athitsos. Context-aware
single-shot detector. In 2018 IEEE Winter Conference on Applications of Com-
puter Vision (WACV), pages 1784–1793. IEEE, 2018.

[28] Jiuwei Li Yuxi Li, Jianguo Li and Weiyao Lin. Tiny-dsod: Lightweight object de-
tection for resource restricted usage. github, 2018. https://github.com/lyxok1/
Tiny-DSOD.

23

