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Abstract— This paper introduces theExtensible Agent Behavior
Specification Language(XABSL) as a pragmatic tool for engineer-
ing the behavior of autonomous agents in complex and dynamic
environments. It is based on hierarchies of finite state machines
(FSM) for action selection and supports the design of long-
term and deliberative decision processes as well as of short-term
and reactive behaviors. A platform-independent execution engine
makes the language applicable on any robotic platform and to-
gether with a variety of visualization, editing and debugging tools,
XABSL is a convenient and powerful system for the development
of complex behaviors. The complete source code can be freely
downloaded from the XABSL website (http://www.informatik.hu-
berlin.de/ki/XABSL/). The language has been successfully applied
on many robotic platforms, mainly in the domain of RoboCup
robot soccer. It gave theGermanTeamthe crucial advantage over
other teams to become the 2004 and 2005 world champion in
the Four-Legged League and helped the teamCoPS Stuttgartto
become third in the Middle Size League in 2004.

I. I NTRODUCTION

Engineering behaviors of (multiple) autonomous agents in
complex and highly dynamic environments is still a chal-
lenging problem in robotics and Artificial Intelligence. For
many years, approaches from classical symbolic and know-
ledge based AI [23] have been dominant in these areas of
research. Generating appropriate actions or “planning” was
reduced to problem solving (as for example in [14]), by
that requiring symbolic representations of the world and its
static and dynamic constraints as well as of the impact of
actions on the environment. Despite general problems with
grounding meaningful and stable representations in the agent’s
environment (see [24] for a review), it is a difficult task to cope
with the complexity of the system by means of logic when
agents have to deal with noisy sensor readings, unpredictable
dynamics of the world, and uncertainty of actions. As Gat [11]
remarked: “Elevator doors and oncoming trucks wait for no
theorem prover.”

Expressing scepticism towards traditional AI research in
“block world” domains, researchers came up with thebehavior
based paradigm [7], [2]. In these biologically inspired ap-
proaches direct sensor-actuator couplings control the overall
behavior of an agent. To obtain more complex behaviors,
several of such behavior units or modules are combined
continuously [1], competitively [19], in layers [5], or state
based. Although impressive behaviors have been realized with

such approaches, it still needs to be shown how to scale up
these systems.

Many researchers in the field of autonomous agents try to
minimize the role of the designer. Some of them propose gen-
eral action selection mechanisms that “automatically” choose
between different options. For example, alternative behaviors
could provide an activation level based on their utility in
the current state of the environment. An automated selec-
tion mechanism could choose the behavior with the highest
activation. Other researchers build systems that are able to
learn complex hierarchical interactions with the environment
by specifying the learning problem (as for example in [3]).

These approaches are definitely in the right direction to-
wards true machine intelligence, but there are several problems
when applying the current state of the art in more complex ap-
plications such as for example robotic soccer. First of all, scal-
ability and extensibility are key issues: adding new behaviors
to existing ones is often difficult as behaviors influence each
other and the utility estimations of all other behaviors have to
be adapted in order to integrate a new behavior. Additionally,
it is often not enough that the agents exhibit meaningful and
versatile behaviors – developers sometimes just want to specify
explicitly what the agents shall do in certain situations. This
can be done by a time-consuming tuning of utility measures
or by adapting the learning problem. The problem with that
is that explicit instructions what to do in particular situations
are hidden implicitly in the specification of the environment,
in the action selection algorithm, or in the reward function
of a learning algorithm. Due to such difficulties developers
often do not use any of these approaches when they program
autonomous agents to perform specific tasks – instead they
hand-code the behaviors in native programming languages.

In this paper we propose theExtensible Agent Behavior
Specification Language(XABSL) as a pragmatic and formal
approach to the design of agent behavior. Hierarchies of
finite state machines make the system modular and ensure
the reusability of behaviors in different contexts as well as
the extensibility of implementations. Section II introduces
the architecture behind XABSL, section III describes the
language and the runtime system, and section IV shows how
XABSL has been applied in different domains. Due to space
limitations, this paper can only serve as an introduction –
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technical details, a language reference, and an XABSL demo
containing the complete source code can be found on the
XABSL website [15].

II. H IERARCHIES OFFINITE STATE MACHINES

XABSL is a language to describe a set of finite state
machines that are organized in a hierarchy. The current state
of the whole set of state machines is defined by the current
states of a subset of single state machines which can be defined
as a directed path. The starting node of this path is given by
the current state of the distinguished root state machine in
the hierarchy. Each state machine is called anoption and the
current states of the subset of options along this path theoption
activation path. The set of options is calledoption graph.

This section describes how options are connected among
each other and arranged in a hierarchy, how the option
activation path is updated, and how actions are derived from
the current option activation path. A ball grabbing behavior
developed by theGermanTeam(cf. sect. IV) for robotic soccer
with Aibo robots serves as an example.

A. How the State Machines Interact with the Environment

An XABSL behavior implementation is always a part of a
more complex agent program. The surrounding software has
to process the sensor readings, build up (if necessary) a world
model, manage the communication with other agents, control
the actuators, and so on. At some point in such asense-think-
act cycle(usually when new data is available from the main
sensor), the program passes the control to the XABSL system
to update the option activation path. To access the information
about the world that is needed for decision making, symbolic
representations are used. Therefore, the world model of the
agent system is divided into simple, typed, and non-structured
information items, calledinput symbols.

There are two ways to control the actions of the robot:
output symbolsand basic behaviors. Output symbolsare
boolean, enumerated, or decimal values. Each single state of
the option activation path can modify a subset or all of the
output symbols. States closer to the end of the path can re-
modify symbols that have already been modified by preceding
states.Basic behaviorsare parameterized actions that can be
activated by the last state of the option activation path (a state
that has no subsequent option). Usually the main actions (like
locomotion) of the agent are controlled by the basic behaviors.
Output symbols can be used to control perception processes
or additional actuators.

B. How Options are Organized in a Hierarchy

An XABSL behavior consists of a set of behavior modules
called options. Each option is a finite state machine (cf. fig.
1). In each option, exactly one state is marked as theinitial
state. An arbitrary number of states can be declared astarget
states in order to indicate that a behavior is finished. Each
state of such a state machine is associated with at most one
subsequent option or basic behavior. Note that more than one
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Fig. 1. An option’s internal state machine. Circles denote states, the circle
with the two horizontal lines denotes the initial state, the double circle denotes
a target state. An edge between two states indicates that there is at least one
transition from one state to the other. The dashed edges show which other
option or basic behavior becomes activated when the state is active.

state can be connected to the same subsequent option or basic
behavior.

This association of the states of an option with subsequent
options allows to create complex behaviors that are composed
from simpler ones. Thus options can use a set of other
subordinated options to realize a certain behavior. For example
in figure 2, the option“handle-ball-at-opponent-border”is
composed of the option“approach-and-turn-and-kick”and the
option “turn-around-ball-and-kick”.

Each option can be used from more than one other option.
This allows for reusing the same behaviors in different con-
texts. E.g. in figure 2 the option“approach-ball” is used by
“grab-ball-with-head” and “approach-and-turn”. This helps
behavior developers to modularize their agent’s behaviors. In
the example, only one behavior for ball approaching was
developed and fine-tuned and then used by various other
different options.

The option hierarchy can be seen as a rooted directed
acyclic graph, called theoption graph. There is only one
source (vertex with no incoming edges) in the option graph
- the vertex that represents theroot option. The sinks of the
graph are the vertices that represent the options that have no
subsequent options.

C. How Options are Activated and Actions are Generated

The current state of the option graph is defined by the option
activation path. The starting vertex of this path represents the
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Fig. 2. An example option graph. Boxes denote options, ellipses denote
basic behaviors. The edges show which other option or basic behavior can
be activated from within an option. The thick edges mark one of the many
possible option activation paths. The internal state machine of option“grab-
ball-with-head” (dashed rectangle) is shown in figure 1.

current state of the root option. The last state may activate a
basic behavior.

To define the possible transitions between the states each
state has adecision tree, which selects a transition to either
another or the same state. For the decisions, parameters passed
by higher options, and input symbols such as the world state,
other sensory information, and messages from other agents
can be used. As timing is often important, the durations that
the state and the option have already been active are provided.
In addition, it can be queried whether the subsequent option
has reached one of its target states. As each state has its own
decision tree, the state transitions are not only dependent on
the representation of the environment’s state but also on the
decisions that were made in the past. When the active state
is taken into account, hysteresis functions between states are
possible. Thus, behaviors can be preferred once they have been
selected in order to avoid oscillations.

The update of the current option activation path of the option
graph starts from the root option. The decision tree of the
current state of the root option is executed to determine the
new current state (which can of course be the same as before).
This state is the first state in the option activation path. If the

Fig. 3. Example XABSL source code for the option“grab-ball-with-head”.
It starts with the definition of a common decision tree (a decision tree that
applies to all states of the option) and then continues with the implementation
of the state“approach-ball” . Here the source code is shown in the editor of
Microsoft Visual Studio, for which an XABSL syntax highlighting and code
completion plugin exists.

subsequent option associated with the current state was not
active in the last step, the current state of this subsequent
option is set to its initial state. Then the decision tree of the
current state of the subsequent option is executed leading to
a new current state, which is added to the option activation
path. This process is repeated until the subsequent behavior
of a new current state has no subsequent option. Each time
a decision tree activates another or the same state, the newly
activated state sets the parameters of the subsequent option or
associated basic behavior and the state’s output symbols.

III. T HE EXTENSIBLE AGENT BEHAVIOR SPECIFICATION

LANGUAGE (XABSL)

This section gives a brief overview over the language
XABSL, the runtime systemXabslEngine, and some of the
tools that were developed in conjunction with the language.
These issues are discussed in more detail in [16] and a
complete language reference and API documentation can be
found at [15].

A. Behavior Specification in XABSL

Agent behaviors based on the architecture described in the
previous section can be described with XABSL. Figure 3
shows an example. There is an XABSL-compiler compiler
written in Ruby that can generate four different types of
documents from an XABSL document: an intermediate code
for the runtime system, debug symbols to be used in debugging
tools, symbol files for code completion and syntax highlighting



for a variety of editors, and an XML representation XABSL
specifications. The XML representation can easily be parsed
by supporting tools e.g. an XSLT processor can be used to
generate an extensive HTML documentation containing SVG
(Scalable Vector Graphics) charts for the option graph, each
option, and each state. Note that the figures 1 and 2 were
generated automatically from XABSL sources.

There are language elements for options, their states, and
their decision trees. Boolean logic (||, &&, !, ==, ! =, <,
<=, >, and>=), simple arithmetic operators (+, −, ∗, /, and
%), enumerations, and conditional expressions (a ? b : c) can
be used for the specification of decision trees, parameters of
subsequent behaviors, and values of output symbols. Custom
arithmetic functions (e.g.“distance-to(x,y)”) that are not part
of the language can be easily defined and used in instance
documents.

Symbols are defined in XABSL instance documents to
formalize the interaction with the software environment. In-
teraction means access to input functions and variables (e.g.
from the world model) and to output functions (e.g. to set
requests for other parts of the information processing). For
each variable or function that one wants to use in certain
conditions, a symbol has to be defined. This makes the XABSL
framework independent from specific software environments
and platforms. The developer may decide whether to express
complex conditions in XABSL by combining different input
symbols with boolean and decimal operators or by imple-
menting the condition as an analyzer function in C++ and
referencing the function via a single input symbol.

An XABSL agent behavior implementation is distributed
over many source files, which helps the behavior developers
to keep an overview over larger agents and to work in parallel.

B. Runtime System

The class libraryXabslEngineis the XABSL runtime sys-
tem. It is written in plain ANSI C++ and it is platform
and application independent. To run the engine in a specific
software environment, only mechanisms for file access and
error handling have to be adapted to the target platform. The
engine parses and executes the intermediate code that was
generated from XABSL documents. It links the symbols from
the XABSL specification that are used in the options and states
to the variables and functions of the agent platform. Therefore,
for each used symbol an entity in the software environment
is registered to the engine. Basic behaviors are written in
C++ and also registered to the engine at startup. The class
library provides extensive debugging interfaces for monitoring
and manipulating nearly all internal states of the engine. A
complete API documentation is available at the XABSL web
site [15].

Based on the engine’s debugging interfaces it is easy to
develop a tool which can display the option activation path,
the parameters and execution times of options, states, and basic
behaviors, as well as the values of input and output symbols.
Vice versa, single options or basic behaviors can be selected
and parameterized manually for execution. Figure 4 shows

Fig. 4. An example for a XABSL monitoring tool using the debugging inter-
faces of theXabslEngine(inside the GermanTeam’sRobotControlapplication.

such a tool. Additionally, theXabsl Profiler can be used to
analyze behaviors over time. For that, log files containing the
option activation path are recorded and visualized in such a
way as to show the length of time states and options were
active. This helps to detect state oscillations or unused states.

C. Discussion

The main difference between XABSL and other behavior
programming and planning languages as for example the
Behavior Language[6], COLBERT [13], the Configuration
Description Language (CDL)[18], or PDDL [20] is the way
how it is integrated into the target platform. XABSL is much
more lightweight than these as it does not impose any con-
straints on the agent architecture or the software design of the
robotic system. Instead, programmers can easily replace their
existing planning and control programs by the XabslEngine
run-time system and start implementing their behaviors in
XABSL.

The fact that XABSL does not model a complete agent
system including sensing and acting but only provides an
action selection mechanism means that the XABSL system



Fig. 5. A soccer game in theRoboCup Four-Legged League.

can not be exclusively labeled as reactive or deliberative. It is
possible to design completely reactive agents that do not have a
persistent world model and it is also possible to use complex
symbolic world models as an input to a highly deliberative
XABSL agent.

XABSL is not in opposition to the approaches mentioned
in the introduction. It is possible (and has often been done)
to use behavior-based techniques in basic behaviors, to learn
parameters of options or basic behaviors, to learn conditions
for state transitions, to coordinate multiple agents, or to use
abstract planning algorithms and provide the results to XABSL
options by input symbols.

It is the choice of hierarchical FSM that makes XABSL
more scalable and easier to extend. Adding an option to
an XABSL behavior specification never has side-effects on
existing behaviors. Once a new behavior (both a composite
option and an atomic basic behavior) has been tested and fine-
tuned, it can be easily integrated in different other options,
without being dependent on the different contexts of these
behaviors. This is because in each of these options the decision
when to activate the new subordinated behavior only depends
on their state and purpose.

The next section shows how XABSL was applied in various
different agent architectures.

IV. A PPLICATIONS

So far, XABSL is mostly applied in theRoboCup[12] robot
soccer domain, a common testbed and benchmark problem for
research in many fields of artificial intelligence and robotics.
First versions of the system [17] were developed in 2001 by
the GermanTeam[22], a group of several German researchers
competing in theRoboCup Four-Legged League(cf. fig. 5).
In this league, teams of four Sony’s four legged Aibo robots
[9] play soccer against each other. The main characteristic of
this league is the complexity of physical actions that have
to be employed both for interaction and perception. As the
opening angle of the 208×160 pixels camera is only 45
degrees wide and thus the robot only perceives small portions
of the field, the obtained world model is very unreliable and

Fig. 6. TeamCoPSin the RoboCup Middle Size League.

noisy. Additionally, walking and ball handling with four legs
results in high uncertainty of actions.

The GermanTeam developed a rich set of basic behaviors
for obstacle avoidance, navigation, and ball handling. Based
on that, more and more complex behaviors were composed
from simpler ones. In general, the lower behaviors in the
option hierarchy such as ball handling or navigation tend to
be more short-term and reactive as they have to react instantly
on changes in the environment. The more high-level behaviors
such as waiting for a pass, positioning, or role changes try to
avoid frequent state changes and make more deliberative and
long-term decisions. A successful behavior in the Four-Legged
League usually consists of about 50 - 80 options. An example
can be found at [15].

Another domain of application is theRoboCup Middle
Size League(cf. fig. 6). In that league, custom-made wheel-
based robots are usually equipped with omni-vision cameras
and laser range finders and therefore have rather precise
world models. For example the teamCooperative Soccer
Playing Robots Stuttgart (CoPS)[8] easily encapsulated their
existing behaviors for navigation and dribbling in XABSL
basic behaviors and used the language itself mainly for very
high level behaviors such as role assignments or game flow.
Additionally, they developed a Petri Net based modelling tool
that generates XABSL source code for specifying cooperation
between robots.

In parallel to AI and robotics research and without much
reciprocal recognition, the computer game community faces
similar problems with similar approaches when designing the
behavior of virtual creatures [10], [21]. Since 2004, several
game programmers started using XABSL for their develop-
ments.

To support behavior engineers when employing XABSL
on their own agent platform, an example XABSL behavior
implementation was made for the ASCII Soccer simulator [4].
In this very simple soccer simulation the field, two teams of
four players each, and the ball are displayed on a text terminal
(cf. fig. 7). The players are able to access a nearly complete
world model and the action set of the agents is very limited:
They can either move to one of the eight neighboring places
or kick. The simplicity of this environment made it possible
to develop a competitive XABSL example agent team with
dynamic role assignments, supporter positioning, passing, and



Fig. 7. A scene from an ASCII Soccer game.

dribbling in a short time. This implementation also shows that
the XABSL language, the tools and the executing engine are
really independent from the developments made for the robot
soccer environments.

The ASCII Soccer XABSL example implementation can be
downloaded together with the complete source code and tools
from the XABSL web site [15].

V. CONCLUSIONS

This paper introduced theExtensible Agent Behavior Spec-
ification Languagefor the convenient developing of the be-
havior of autonomous agents. State based techniques allow
for dealing with uncertainty in highly dynamic environments.
Composing state machine based options in hierarchies makes
behaviors reusable in different contexts and by that enables
behavior designers to develop scalable and complex behaviors.

Although XABSL was initially developed for robotic soccer,
it is not a soccer programming language – there are no
language elements of concepts that are specific for soccer ap-
plications. The language and the run-time systemXabslEngine
are application and platform independent and can be relatively
easily employed in any agent system.

The modular nature of XABSL supports the development
of behaviors in a team (for example more than 20 team
members of theGermanTeamwere involved in the developing
and tuning of their behaviors). New options can be easily
added to existing ones without having negative side effects.
With the debugging interfaces of theXabslEnginenew options
can be tested separately before they are used by higher-
level options. Improved versions of existing options can be
developed in parallel and are easy to compare with previous
ones. A constantly extending library of well tuned low-level
behaviors can be reused in different contexts for the creation
of new options.

XABSL becomes increasingly wide spread. By now, it is
used by more than 25% of the teams in the RoboCup Four-
Legged League, but it is also applied on other robots in the
RoboCup Middle Size and Humanoid League. It helped the
GermanTeamto become the 2004 and 2005 world champion in
the Four-Legged League. Although this success was of course
also based on many other achievements, we believe that the

ability of the team to develop an adopt very complex and
efficient behaviors – even during the ongoing competition –
played a key role in winning these titles.
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