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Sensors 
Sensus (lat.): the sense 
• Recording information related to state or change of state 

(physical, chemical ...). 
 
• Transformation between state/change of state 
     by differentiation/integration 
        e.g. distance – speed – acceleration 
        drift problems over time (e.g. odometry) 
 
• Conversion to internally processable information 
       Technically: mostly electronic signals 
       Nature: electrochemical processes 
 
• Direct influence on actuators in case of sensor actor coupling 
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Human senses (more than 5) 
see 
listen 
smell 
taste 
tactil 
 
heat 
pain 
balance 
hunger 
thirst 
muscle tension, joints, ... 

Further senses in nature 
e.g. magnetism, electricity 
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Processing of Sensations in Nature 
• Stimulus excites a receptor 
• Release of nerve impulses 
• Forwarding to the spinal cord / brain: 

About 1 million receptor signals per second in the Central 
Nervous System 

• Unconscious reflexes activated by spinal cord or brain 
“Sensor-Actor Coupling” 

• Filtering in Thalamus: 
Only selected signals are consciously perceived in the 

cerebral cortex. 
 



Problems in Perception 

Humans can deal with incomplete and unreliable data 
Humans use redundancies 
Humans use world knowledge and experience 
Humans can deal with high complexity  
 
 
 
Recent machines are far from human performance  
Useful results only in special cases  
Missing robustness and reliability 
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Sensors of Nao (Academic Version) 
  

4 Microphones (head)   
2 CMOS digital cameras (head)  
32 Hall effect sensors    (joints)  
1 Gyrometer 2 axis (torso) 
1 Accelerometer 3 axis (torso)  
2 Bumpers (feets) 
2 Channel sonar (torso)  
2 Infrared sensors (torso)  
9 Touch sensors (head, hands)  
8 Force Resistance Sensor  (feets) 



Sensors 

 
• Passive sensors  

-  record signals created in the environment 
• Active sensors  

-  send signals (sonar, laser, radar, infrared, ...)  
    and measure the reflections 
-  disadvantage: recognizable through their signals  

• Proprioceptive sensors 
- bodily sensation 
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Sensors 
Internal sensors:  
„Proprioceptive sensors“ 

("self") 
• Position (body, joints) 
• Motion 
• Internal forces 
• Temperature (inside) 
• Resources 
• Energy  
• ... 
 
 

External sensors:  
 
("Environment") 
• Light, Vision 
• Sound 
• Smell 
• Distance 
• External forces 
• Temperature (outside) 
• … 
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Sensors in Robotics  
Exploit physical/chemical … features, e.g. 
 

• Current - power - resistance - inductance - conductivity ... 
 

• Wavelength - frequency - phase shift - echo - runtime ... 
 

• Mass - force - speed ​​- acceleration - inertia ... 
 
Transformations by related physical laws. 
       e.g. State to velocity by differentiation 
 
Conversion into internal information (mostly electronic signals) 
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Sensor Model and Observation Model  
s  = state/feature of the world 
o = observation: sensory data according to s 
 
Sensor Model: „Forward model“ 
                 o = fsensor(s)  
 
Observation Model: „Backward model“ 
                   s = f -1sensor (o) 
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Sensor Model: Sonar 
Acoustic propagation  
(ca. 330 m/sec) 

Image from “Where am I?" -- 
Systems and Methods for Mobile 
Robot Positioning by J. Borenstein, 
H. R. Everett, and L. Feng 



Y 

X 
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Sensor Model: Camera Projection 
   

Xw,Yw,Zw : world coordinates 
X,Y, Z:       camera coordinates 
x,y :           image coordinates 

Image from “Where am I?" -- Systems and Methods for Mobile 
Robot Positioning by J. Borenstein, H. R. Everett, and L. Feng 

R 
T 

(Xw,Yw,Zw)  
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Sensor Model: Camera Projection 
   Y 

X 

For given  
camera parameters (R,T, f): 
 
Image coordinates (x,y)  
are uniquely determined  
by object coordinates (Xw,Yw,Zw) 

R 
T 

(Xw,Yw,Zw)  

  

(Xw,Yw,Zw)  

Detailed descriptions will 
be given later 



Problems with Observation Model 
• fsensor often not bijective  (f -1sensor not unique) 
       
       
 
 
 
 
• noisy data:    o = fsensor(s)  + fnoise(s) 
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For given  
camera parameters (R,T, f): 
 
Object coordinates (Xw,Yw,Zw)  
are not uniquely determined  
by image coordinates (x,y) . „Badly posted problem“ 



Problems with Measurements 
• Systematic errors (e.g. wrong position of sensors). 

 
• Noise (caused by many inside and outside reasons): 
 
 
 
 
 

 
- Modeling by noise models (often statistically). 
- Noise reduction by filtering. 
- Preprocessing in perception methods. 
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different  noise 
 
(PhD thesis 
J.N.E. Barrantos) 
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Signals 
Information by 
     frequency, amplitude, pulse duration, ... 
    (Topics in Signal Processing) 
 
Analog vs. discrete: 
Depends on recording and processing 
Conversion in both directions possible: 

- Quantization 
- Sampling 
- Interpolation 
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Quantization 
Discrete instead of continuous values (by rounding). 
 
 

Small differences of continuous values can lead to 
larger differences of rounded values.  
Oscillations by noisy signals. 

0 1 0 0 
1 1 1 0 
1 1 1 0 
0 0 0 0 

0 0 0 0 
0 1 1 0 
0 1 1 0 
0 0 0 0 
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Interpolation 

Find a curve which 
matches best given points. 
 
Depends on  
- class of curve 

o linear 
o piecewise linear, 
o quadratic, … ) 

- number of points 
- error measure 
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Sampling Theorem (periodic functions) 

Problem: 
The red curve is measured only at few points: 
Only the black points are registered. 

The black dots are interpreted as a lower 
frequency curve: "Alias" 
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Sampling Theorem 
Example: Smaller intervals for measurements:  
   --  More points 

How many measurements are needed? 
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Sampling Theorem 
 
 
 
 
 
 
 

Sampling Theorem 

For correct reproduction we must have: 

More than 2 sampling points per wavelength T, 

         i.e. sampling rate  Dx < T/2  (Nyquist criterion) 

  or: 

          Sampling frequency must be more than twice as     

          large as the highest occurring frequency. 

Holds also for more dimensional signals (e.g. images). 
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Example: Resistance Sensors 
Potentiometer: 
   Voltage dependents on position on a resistor. 
   Sensor: 
   Transformation of mechanical values (e.g. position) 
   into electrical signals. 
 
 
Straingages: 
   Resistance depends on length (e.g. of meandering material) 
   Sensor: 
   Measurement of deformations.  
 



Light Sensor / Infrared Sensor 
Device with varying electronic properties (charge, resistance, …) 

depending on light intensity. 

• Single sensor for measurement of brightness 
(cf. Braitenberg vehicle) 

• Sensor fields (1D, 2D) with optics for cameras (visual sensor) 

• Infrared sensor: measures temperature (alarm systems) 

•  Active infrared sensor for close distance measurements: 
-  sends coded signals, measures reflected echo  
-  similar to Sonar: no accurate measurement, cheap 
-  arrangement as a ring: "non-contact bumpers“ 
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Omnidirectional Camera 
360 degrees of view 
Can be realized by special (conic) mirror: 
Different surface curvature for better resolution at close range 
Needs appropriate camera model and methods  
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Measurement of Distances 
Many possibilities, e.g. 
 
- Measure the performed path of a vehicle (wheel encoder)  
- Send Signal, receive echo: 

• Time difference proportional to distance 
• Phase shift proportional to  distance 

- Image interpretation: 
• Size of objects reciprocally proportional to distance 
• Vertical view angle proportional to distance 
• Stereo vision: Shift proportional to distance 

 
 

Sonar 
Laser 
Radar 
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Incremental Wheel Encoder 
Measurement of rotation by identical markers 
• speed (distance by integration) 
• no wheel position, no direction 
• Problem: error drifting 
Multichannel Encoder: 
• speed 
• direction 
• zero position (C) 
 
 
  
 
 
 

Images from “Where am I?" -- Systems and 
Methods for Mobile Robot Positioning by J. 
Borenstein, H. R. Everett, and L. Feng 



Burkhard, Brkic Bakaric Cognitive Robotics   Sensors 31 

Absolute Wheel Encoder 
• Each position has individual word pattern 

     Gray code (a),    BinaryCode (b)  

• Disturbances without affecting 

• 12 bits:    0.1 degree accuracy 
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Odometry 
Known start position 
Actual  position by measuremaent of pathes 
 
 
• Wheel encoder 
• Motion of legs 
• Control  
• Inertial sensors 
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Systematic errors  
By sensors (e.g. wheel encoder) 
By controls (e.g. unsymmetric wheels) 

Non-systematic errors 
Ground 
External forces (e.g. other robots) 

Odometry: Measurement Errors  

Main problem:  
Errors of direction 
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Sonar Sensors 
 

 
Sonar = sound navigation and ranging     

Active ultrasonic sensor (> 20 kHz) 

Cheap,  but noisy and inaccurate 

Arrangement as a ring for 
obstacle detection. 
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Sonar Sensors 
Send pulse - receive echo: 
• Time difference is proportional to the distance 
alternatively:  
• Phase shift proportional to the distance 
 

V proportional to  

phase shift 
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Sonar Sensors 
 

 
Sensor model: 

Amplitude strength depends on the direction 
relative to the center of the signal 

Image from “Where am I?" -- Systems and Methods for Mobile 
Robot Positioning by J. Borenstein, H. R. Everett, and L. Feng 



Burkhard, Brkic Bakaric Cognitive Robotics   Sensors 37 

Sonar Sensors 
 

 

Distance (in m) d = 0,5 × c × t   by echo runtime t (in s): 

                               c = c0+0,6T m/s   

with  c0=331 m/s ,   T=Temperature (Celsius)  

Device transmits a short sound,  
then switch to work as microphon (receive echo). 
No measurements in close distance  ( < 6cm) 
(„blanking Intervall“: internal echos) 
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Problems with Sonar Sensors 
• „Crosstalk“ 
  Interference of reflexions:  

- Direct (a) 
- Indirect (b) 

 
 
 

 
 

• Missing reflection 
• Multiple reflection 
     

 
 

To avoid: 

Use different frequencies and 
signals by the sensors. 

Image from “Where am I?" -- Systems 
and Methods for Mobile Robot 
Positioning by J. Borenstein, H. R. 
Everett, and L. Feng 
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Problems with Sonar Sensors 
Sonar measurements  
of a robot  driving on  
the depicted path 
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Sonar Sensors 

Ultrasound organs in nature: 
   Dolphins, 
   Bats. 
 
Bats use different frequencies and can identify flying insects. 
•  very complex skills 
•  not yet fully investigated 
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Laser Sensor 
Active sensor using echo of laser impulses 
 
Laser   = light amplification by stimulated emission of radiation 
 
High intensity with short pulse 
Different forms of production 
 
• Very accurate distance measurement 
• Very high range 
• Short sampling time: even at high speeds 
• Expensive devices 
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Laser Sensors 
Detection of a RoboCup field by a Midsize League Robot 
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Laser Sensor 
Different methods: 
• Time of fly 
• Phase shift 
• Triangulation 
• Blur 

Problems:  

•  Multiple reflection 

•  No echo at transparent objects (glass) 

•  Eye sensitivity 
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Stereoscopy 
2 camera images from different positions 
     (by 2 cameras or a moving camera) 
 
Calculation of distances by different view angles of objects 
 
 
Correspondence problem: 
     Which objects/pixels belong together? 

Comparison of image features  
Correlation methods 
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Distance measurement with structured light 
Projected pattern is distorted by the geometry of the object. 
Kinect uses infra red.   



Force Sensors 
Transformation of force into electronical signals: 
 
Change of electrical properties  
(e.g. resistance, capacity, inductivity)  
by mechanical deformation caused by forces 
 
• Touch sensors (hand, feet, artificial skin …) 
• Collision detection (bumper) 
• Coupling with actuators 
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pet 



Inertialsensor: Accelerometer 
Measures acceleration 
 
• Inertial sensor (needs no contact with outside world). 
• Must regard gravity. 

 
Measurement of speed and path by integration. 
Measurement of position by gravity.  
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Inertialsensor: Rotation 
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Gyroscop 
 
Internal sensor: 
• Orientation in space ("artificial horizon" in a airplane) 
• Measurement of rotation 
     (force caused by changing direction) 
 
Problems: Drift over time, Earth's rotation 
 



Inertial System  
Combination of accelerometer and gyroscop: 
 

Measurement of linear and rotational motions. 
 
For odometry using only internal sensors: 
 

Calculation of the path from starting point  
(integration over time)  
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Energy Consumption 
Conclusion to external forces 
by measuring the needed energy consumption (current) 
or the generated heat. 
 
Possibilities for feedback control.  
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Weight of objects  
by current needed at 
the shoulder joints 



Acoustic Sensors: Microphone 
Transformation of sound waves (forces) into electrical signals 
    (e.g. membrane in magnetic field) 
 
Time-dependent signals (limited polling frequency) 
 
Noisy (internal, external noise) 
 
Applications: 
•   noise detection 
•   speech recognition 
•   bearing (echo) 
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Language processing 
Complex process with many levels: 
• Preprocessing 
• Identification of sounds, syllables, words 
• Identification of relationships 
        (e.g. dereferencing pronouns) 
• Interpretation: Identification of meanings/intentions 
 
Requires knowledge about 
•   Sentence structure, grammar, syntax, ... 
•   Relationships, contexts, ... 
Requires knowledge about the world 
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“AI-hard”:  Turing Test. 
 
Similar to 
 image processing. 
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Vision 
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Magritte 



Vision 
Humans use about 50% of brain  
       for image processing and interpretation 
Preprocessing already performed in the eyes 
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Optical Sensors 
  
Light sensitive elements (e.g. CCD = Charge Coupled Device) 

Arranged in form of a matrix with filters for different colors. 

Result stored in a pixel matrix („frame“).  

Short intervals: e.g. 30 frames per second (fps). 

 

 

 

 

Bayer Filter for CCD (from Wikipedia)  

for colors red, green and blue (RGB-system)   

Brightness/contrast perception in human eyes especially by green (72%) 
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Optical Sensors 
  
„Pixels“ = picture elements 

 

Usually three color values  

for intensity of red, green, blue 

(higher value = more intensity)  

 

 
 

 
RGB-system 
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 Color Channels in RGB-System 
  



Spectral Colors vs. RGB 
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Light consists of  
a continuum of frequencies,  
but RGB measures only 3 colors? 



Spectral colors vs. RGB 
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Intensities of day light 

Intensities of a light 
that looks red  



Human eye … 
… has only three types of color sensors („cones“)  
 
• red (64%)          middle area 
• green (32%)      central area 
• blue (4%)          peripheral area 

 
 

and additional light intensity sensors („rods“) 
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Blue text is exhausting to read 



Sensivity of human eye sensors 
… 
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red cones 

green cones 
blue cones 

         rods 
(brightness) 

Note that different sensitivies are found in literature.  



Response by Sensors 
Sensor response e depends 
on light intensity I and sensor sensitivity f for all frequencies l :  
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ò= lllf dIe )()(

Response e for  red sensitive sensor 

Response e for green sensitive sensor 

Response e for blue sensitive sensor 

Example: 



RGB-System 
Different light may have identical RGB values: 
Metamerism of light. 
 
RGB tries to mimic human eyes  
and therewith to produce acceptable rendering. 
 
But:  
Those colors don‘t „exist“ in nature, 
they are only physiolocically grounded 
(by individuals!). 
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Other color systems 
 for other applications  
(YUV, CMYK etc.)  
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RGB-System 
 
Additive Model (3 dimensions) 
Used for aktive media (e.g.  displays) 
 
Spectral intensities are added 

R=700    nm 

G=546,1 nm 

B=435,8 nm 

blue 

green 

red 
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Color Classification 
 
By regions in the RGB-Room 
 

blue 

green 

red 

           

                 



Problems with Colors 
Distortion of colors by lighting and preprocessing in the camera 
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(a, b, c): images taken under different lighting conditions 
(d, e, f):  resulting color classifications by unique parameters 
(from Diploma thesis Matthias Jüngel) 
 



Adaptation/Calibration 
Human color perception adapts to changing conditions. 
This may result in illusions. 
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Adaptation/Calibration 
Human color perception adapts to changing conditions. 
This may result in illusions. 
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Color Calibration 
Tools for manual calibration  
 
 
 
 
 
 
 
 
 
Different approaches for automatic calibration 
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Camera Model (Colors) 
A complete color model had to regard: 
- The sources of illumination: 

- Their spectral characteristics (frequencies, intensities) 
- The illuminated objects:  

- Their characteristics w.r.t. absorbance/reflection 
(directions, frequencies, intensities) 

-  The spatial relations between all sources/objects. 
 

Very complex calculations: Only simplified models.  
Color spaces like RGB are not exact models. 
Difficulties in calibration. 
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Camera Model (Geometry) 
  

Diploma thesis Matthias Jüngel  



Conventions 
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Conventions: 
• right hand coordinate systems 
• angles are measured counter clockwise 
• orthogonal matrices, 
  hence R -1 = R T 
 

x 

y 

z 



Y 

X 
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Camera Model 
   

Xw,Yw,Zw : world coordinates 
X,Y, Z:       camera coordinates 
x,y :           image coordinates 

Image from “Where am I?" -- Systems and Methods for Mobile 
Robot Positioning by J. Borenstein, H. R. Everett, and L. Feng 

R 
T 

(Xw,Yw,Zw)  
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Camera Parameters („Camera Matrix“) 
Extrinsic parameters:  

Pose w.r.t. world coordinates  Xw,Yw,Zw  : 
• Location of focal point (3 DOF) 
• Orientation (3 DOF): 

Camera Coordinates X,Y,Z with origin in focal point 
direction of Z is optical axis 

 
Intrinsic parameters: 
    Position of image plane (w.r.t. camera coordinates) 

• Focal length  f (1 DOF) 
• Intersection point of optical axis (2 DOF): 
      Image coordinates x, y with origin at Z-axis and  

orientation parallel to XY plane 
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Perspective Projection (Central Perspective) 
  

Intercept Theorem 
Z : f   =  X : x   =  Y : y  
 
x = f/Z  • X    
y = f/Z • Y 

The image coordinates (x, y) are uniquely determined by 
Camera coordinates (X, Y, Z). Exactly valid under 

ideal conditions 
(Pinhole camera) 

Y 

X 
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From World to Camera Coordinates 

(X,Y,Z) 

(XW,YW,ZW) 

Camera 

Y 

X 

Z 

World 
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From World to Camera Coordinates: Translation 

   (X‘,Y‘,Z‘) 
= (XW,YW,ZW) - T  
= (XW,YW,ZW) - (XT,YT,ZT) 

c 
Translation  
T = (XT,YT,ZT) 

Z‘ 

Y‘ 

X‘ 

(XW,YW,ZW)  

Camera 

Y 

X 

Z 
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From World to Camera Coordinates: Translation 
Usually,  the translation vector T is not directly known. 
 
It must be computed along the „Kinematic Chain“, i.e. with 
calculations by translations along limbs and rotations in joints. 
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From Translated World  
to Camera Coordinates: Rotation 

Camera 
Rotation R =  

(X,Y,Z)  
= R × (X‘,Y‘,Z‘) 
= R × ( (XW,YW,ZW) - T ) 
= R × ( (XW,YW,ZW) - (XT,YT,ZT) ) 

Camera 

Y 

X 

Z 

Z‘ 

Y‘ 

X‘ 

r11 r12 r13 

r21 r22 r23 

r31 r32 r33 
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Rotation in 2D Euclidean Space 

 changes to  cos a 
  sin a 

1 
0 

(A,B) 

x 

y (a,b) 

a 

Rotation of a point by angle a 
from (a,b) to (A,B) 

-sin a cos a 

cos a sin a 

 = 
A 
B 

a 
b 

 changes to  -sin a 
  cos a 

0 
1 

 changes to  a cos a – b sin a   
a sin a  + b cos a 

a 
b Rotation matrix 

-sin a cos a 

cos a sin a 

 R = 

a 
b 

1 
0 

=   a  +  b 
0 
1 
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Rotation in 2D Euclidean Space 

  

x 

y 

X Y 

(a,b) 
(A,B) 

a 

Rotation of a the old coordinate system (lower letters x,y, blue) by angle a 
into new rotated coordinate system (capital letters X,Y, red). 
It changes coordinates of a point from (a,b) to (A,B) 

sin a cos a 

cos a -sin a 

 = 
A 
B 

a 
b 

Rotation matrix 
sin a  cos a 

cos a - sin a 

 R = 

Corresponds to rotation of  the point (a,b) 
by inverse rotation R-1 

Corresponds to rotation of  the point (a,b)  
by angle  - a 
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Rotation in 2D Euclidean Space 

  Angles between old and new axis:  a,b,g,d 
Direction cosine: cosine of those angles. 
 
 
b = p/2-a 
g = p/2+a 
d = a 
 
cos b =  - sin a  
cos g  =   sin a  

x 

y 

X Y 

(a,b) 
(A,B) 

a b 

g 

d 

Rotation matrix 
with „direction cosine“ 

sin a  cos a 

cos a - sin a 
 R = 

cos g  cos a 

cos d cos b 

= 



Rotation Around a Single Axis in 3D 
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x 

y 

z 

Y 
Z 

Rotation around old x-axis 
rotates coordinates in y-z-plane 
from y-z to Y-Z  

1      0       0     

0   cos a sin a 
    
0  -sin a cos a  

a 



Rotation Around a Single Axis in 3D 
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x 

y 

z 

Y 
Z 

Convention:  
Rotation around an axis are oriented  
counter clockwise when looking „from above“, 
i.e. against orientation of the rotation axis. 

cos a 0   -sin a  
0       1     0 
    sin a 0  cos a  

1      0       0     
0   cos a  sin a 
    0  -sin a  cos a  

cos a  sin a  0 
    
0        0        1 

X 

Rotation by a  
around x-axis 

Rotation by a  
around y-axis 

Rotation by a  
around z-axis 

-sin a  cos a  0  
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Yaw, Pitch, Roll in Aviation and Nautics 
  

x, roll  

y, pitch  

z, yaw  

Angles are measured w.r.t. fixed coordinates: 
Extrinsic rotations. 
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Yaw, Pitch, Roll in Robotics 

Angles are measured (effectors, perceptors)  
with respect to changing local coordinates: 
Intrinsic rotations. 

z 

y 
x 



Camera Model Nao 
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(XW,YW,ZW) 
World coordinates 

Translation  TNP =(XNP,YNP,ZNP) 
to Neck Pitch joint 

Translation  TF =(XF,YF,ZF)  
to focal point 
Rotation Neck Yaw a 
Rotation Neck Pitch b 

Neck Pitch is located 
at axis of Neck Yaw:  
No translation needed 
between these joints  
using  translation from 
world to NeckPitch. 

Camera Coordinates 
       (X,Y,Z) 

XW 

YW  

ZW 

View direction  

Y 

Z 

X 

Note:  
View direction is X-axis 
 
(while usually it is Z-axis) 



                          Camera Model Nao 
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World coordinates are transformed: 
Translation to neck pitch joint (XNP,YNP,ZNP) 
Rotation Neck Yaw a 
Rotation Neck Pitch b 
Translation to camera focal point (XF,YF,ZF) 

XW 

YW  

ZW 

x 

y 

z 

x y 

z 

x 

y 

z 

(XW,YW,ZW) 
(X,Y,Z) 

View direction  

Y 

Z 

X 

    = 
1      0       0     
0   cos a  sin a 
    0  -sin a  cos a  

cos b  0   -sin b  
0       1     0 
    sin b  0   cos b  

XW - XNP    

ZW - ZNP  
YW - YNP  - 

XF 

ZF 

YF 

X 

Z 

Y 
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Perspective Projection (Central Perspective) 
  

Intercept Theorem 
Z : f   =  X : x   =  Y : y  
 
x = f/Z  • X    
y = f/Z  • Y 

The image coordinates (x, y) are uniquely determined by 
Camera coordinates (X, Y, Z). 

Y 

X 
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Perspective Projection (Central Perspective) 
  

Intercept Theorem 
X : f   =  Y : y   =  Z : z  
 
y = f/X  • Y 
z = f/X  • Z   

The image coordinates (x, y) are uniquely determined by 
Camera coordinates (X, Y, Z). 

Y 

X 

Usually Z-axis points in view direction, 
while for Simulated Nao,  
view direction is X-direction.  X 

y 

z 

Y 

Z 

(x,y) 

(X,Y,Z) 



Camera Model Simulated Nao 
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                       X    =      R     ( X W - TNP ) - TF  

y = f/X  • Y 
z = f/X  • Z   

where  f is the focal length, and  X,Y, Z are calulated by 

Camera Model 

Rotation matrix  
by multiplication of matrices 

    = 
1      0       0     
0   cos a  sin a 
    0  -sin a  cos a  

cos b  0   -sin b  
0       1     0 
    sin b  0   cos b  

XW - XNP    

ZW - ZNP  
YW - YNP  - 

XF 

ZF 

YF 

Y 

X 

Z 



Inverse Camera Model Nao 
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X W =  R -1(X +TF ) + T   

X  = R ( X W - TNP ) - TF Camera Model 

Inverse  
Camera Model 

X= (X,Y,Z) can not be 
completely reconstructed  
from x, y only 
 
Additional information  
is needed, e.g. 

• Distance Z  
• Size of an object 
• Location on ground 

x = f/Z  • X    
y = f/Z  • Y 

X = x • Z / f 
Y = y • Z / f 

Change for Simulated Nao 
as before: 
View direction is X-direction.  



Vision Perceptor of Simulated Nao  
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Provides polar coordinates relatively to the camera 

= a in RoboNewbie 

= d in RoboNewbie 



Facing forwards Facing 
sidewards 

 Preprocessing for Perception in RoboNewbie 
LookAroundMotion moves the head (the camera) continuously: 

Turns down to 40°, back  to upright position, 
then left to 60°, right to -60° and back to initial position.  

Objects perceived with different coordinates relatively to camera. 
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But LocalFieldView needs unique coordinates (facing forwards). 



Simplification in RoboNewbie 
The vision perceptor collects visual data while moving the head. 
 
The position of an object is described by polar coordinates 
 (d, a, d) with distance d, horicontal angle a and vertical angle d . 
 
Direction of the head (camera) by LookAroundMotion is: 
1. in horizontal direction (yaw y) while vertical angle (pitch f) is 0. 
2. in vertical direction (pitch f) while horizontal angle (yaw y) is 0. 
 
LocalFieldView is to provide transformed data (d’, a’, d’)  
according to the coordinate system when facing forward. 
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Simplification in RoboNewbie 
The distance d remains unchanged, i.e. d’ = d, 
but angles a’ and d’ need to be calculated from a, d, y, f . 
Correct calculation need transformations as described before.  
 
Instead, a simple approximation is performed by RoboNewbie:  
a’ and d’ are calculated using the offsets y resp.  f .  
 
The result is correct 
•  for vertical angle d’ . 
• for horizontal angle a’  as long as f = 0 . 
It is only an approximation for angle a’ if f ≠ 0 (head tilded) 
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Simplification in RoboNewbie 
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The angles d and a of perception change according  
to the change from XY-plane to X’Y-plane (tilded head). 
 
Correct transformations 
would need complex  
geometrical calculations. 
 
Drawback  
of simplified calculation: 
Deviations of position  
for near objects.  
 
 
 



Rotation Matrix for Intrinsic Rotations 
Intrinsic Rotations:  
Rotations are given w.r.t. recent object coordinates  
(e.g. Euler angles in ZX‘Z‘‘ system). 
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If A, B, C  are successive intrinsic rotations,  
then the resulting rotation is described by R = C B A  



Rotation Matrix for Extrinsic Rotations 
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If A, B, C  are extrinsic rotations,  
then the resulting rotation is described by R = A B C 

Extrinsic Rotations:  
Rotations are given w.r.t. a fixed coordinate system 
(e.g. yaw-pitch-roll in Aviation/Nautics). 
 
 
 
 

result of the first rotation is given by A 
result of the first two rotations is given by 
      intrinsic rotations (ABA-1) and A resulting in (ABA-1)A = AB 
result of all three rotations is then given by 
      intrinsic rotations ((AB)C(AB)-1) and (AB)  
      resulting in ((AB)C(AB)-1) (AB) = ABC 

 
 



Problems with Camera Model 
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Position of camera (extrinsic parameters):  
Errors in the kinematic chain:  
• joint angles (backslash, sensor noise) 
• distortion during motion 
 
 
 
 
 
Can be determined/corrected by known landmarks  
(cf. localization methods: later) 
 



Problems with Camera Model 
Geometrical distortion by optics (intrinsic parameters) by 
refraction of the light at the inlet and outlet from the media 
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Problems with Camera Model 
Distortions determined/corrected/calibrated by experiments: 
Imaging parameters determined by 
corresonding points in reality and in image. 
 

 



Problems with Camera Model 
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Example for calibration:  
Ceiling camera in Small Size League 
(FU-Fighters Berlin) 



Problems with Camera Model 
Motion Blur (delays while reading pixels during motion) 
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You can also see  
color distortion  
(blue in the corners) 



Outline 
Introduction 
Sensors: General Considerations 
Signals 
Sensors: Special Types 
Vision (introductory) 
Camera Model 
Image Processing (introductory) 
Scene Interpretation (introductory) 
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Image Processing 
Given a pixel matrix: what is the content of the image? 
 
Can include many processes: 
• Signal processing (noise reduction, …) 
• Low level identification (line detection, color detection,…)  
• Object identification 
• Relation between objects 
• Scene reconstruction (3D-model) 
• Scene interpretation 
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Visual Information for Real Nao: Images 

Interpretation needs  
complex image processing. 

It is possible to provide synthetic images for simulation, 
but standard in 3D league are already preprocessed data. 

Burkhard, Brkic Bakaric Cognitive Robotics   Sensors 
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Preprocessing of Images 
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Color  
classification 

Boundary  
of objects 

Identification  
of objects 



Identification 
Identification of an individual object:  
Based on known features 
 
 Features computed e.g. from 
• Colors 
• Shapes 
• Size  
• Statistics in useful regions (SIFT, SURF) 
• Relations between points 
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Identification 
 Each object has a (high dimensional) feature vector  (“signature”) 
 
 

+ 

+ 
+ + Object 2 

+ 

Object 1 

+ 

+ 

+ 
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In simple cases, the objects can be identified using 
explicit world knowledge (e.g. “the ball is orenge”). 
 
In general, the world is more complex.  
 
 



Identification 
Nearest Neighbor Method 
Compare observed object by similarity to known objects 
Choose most similar object (or reject) 

Example: Face Recognition 
1. Identify related regions 
2. Identify (biometric) features 
3. Compare with database 

Available by commercial products  
 
Works well with frontal faces 
Depends on available resources 

+ 

+ 
+ + Object 2 

+ 

Object 1 

+ 

+ 

+ 
? 
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Classification 
Classify objects 
Based on known features, properties, relations 
Problems with diversity of objects in the same class  
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Classes = partitions of the feature room 

- 

+ 
+ + + + 

+ 

+ 
- - - 

- 
- 

- 
- 

- 

- 

- 
- 

+ 

+ + + + 

+ 
+ 

+ 

+ 
+ + + 

+ 
+ 

- 
- - - - - 

- 

- 
- - - - - 

- 
- - - 

- - 

- - - - - 

? 

Classification  methods e.g. 
 
• Nearest Neighbor 
• Decision tree 
• Neural Network 
• Support Vector Machine (SVM) 

Problems:  
• High Dimensionality 

116 

Classification 
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Support Vector Machines (SVM):  
Classification by orientation relative to partition line 

? 

Construction of a partition line 
from examples (Machine Learning) 

117 

Classification 
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Construction of a partition line by examples 

- 

+ 
+ + + + 

+ 

+ 
- - - 

- 
- 

- 
- 

- 

- 

- 
- 

+ 

+ + + + 

+ 
+ 

+ 

+ 
+ + + 

+ 
+ 

- 
- - - - - 

- 

- 
- - - - - 

- 
- - - 

- - 

- - - - - 

Problem:  
Which line is the best? 

118 

Classification 
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Construction of a partition line by examples 

Problem:  
Which line is the best? 
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Classification 

- 

+ 
+ + + + 

+ 

+ 
- - - 

- 
- 

- 
- 

- 

- 

- 
- 

+ 

+ + + + 

+ 
+ 

+ 

+ 
+ + + 

+ 
+ 

- 
- - - - - 

- 

- 
- - - - - 

- 
- - - 

- - 

- - - - - 
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Construction of a partition line by examples 

Problem:  
Which line is the best? 
 
Data may have been noisy! 
(overfitting problem) 
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Classification 

- 

+ 
+ + + + 

+ 

+ 
- - - 

- 
- 

- 
- 

- 

- 

- 
- 

+ 

+ + + + 

+ 
+ 

+ 

+ 
+ + + 

+ 
+ 

- 
- - - - - 

- 

- 
- - - - - 

- 
- - - 

- - 

- - - - - 
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Generalization Problem: 
The classification of new objects depends on the choice of 
the learning method (inductive bias)  

121 

Classification 
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Outline 
Introduction 
Sensors: General Considerations 
Signals 
Sensors: Special Types 
Vision (introductory) 
Camera Model 
Image Processing (introductory) 
Scene Interpretation (introductory) 
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What the Robot Sees 
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Scene Interpretion 
Badly posed problem:  
Reconstruction of a 3D scene from 2D image 

M.C.Escher 
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Scene Interpretion 
There are many available informations 
• i.g. enough to reconstruct a scene even from 2D images by 

using world knowledge. 
• i.g. redundant for dealing with noise. 
 
But: It is hard to compute. 
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Exploiting Redundancy 
  

Where am I ? 
Where is the ball ? 

126 
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Exploiting Redundancy 
  

The size of the goal defines a circle of 
possible positions of the observer 

127 
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Exploiting Redundancy 
  

The size of the ball defines a circle of possible 
positions of the ball relative to the observer 

128 
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Exploiting Redundancy 
  

The ball lies on a line before the penalty border line  

129 
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Exploiting Redundancy 
  

The ball lies on a certain line between goal post 
and observer  

130 
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Exploiting Redundancy 
  

Combination yields 2 possible positions 

131 
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Exploiting Redundancy 
  

Combination yields 2 possible positions 

132 



Integration of Information 

Processing on different levels 

Preprocessing of sensory data 

Feature detection 

Object classification 

Scene Interpretation 

... 
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Integration of Information 
Integration of different sensors 

... ... ... ... ... 

In most systems 
only partially implemented 
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Integration of Information 
Integration over time 
Attendance/Focussing 

... ... ... ... ... 

... ... ... ... ... 

... ... ... ... ... 
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In most systems 
only partially implemented 



World Model 

Objectives behind: 
Keep perceived information because 
• Environment only partially observable  
• Observations are unreliable and noisy 
 
 
Using  
• Knowledge (e.g. maps) about the world 
• Tracking of objects over time 
 
 

New belief= old belief + new sensory data 
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World Model is called “belief”. 
Because it needs not to be correct! 
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World model 
  

Belief_new  := update (Perception, Belief_old);   

 new perception from recent image 

+ = 

Update of belief 

137 



Scene Interpretation 
Calculcate spatial model from geometrical/topological data using 
• maps   
• perceived objects 
• relations between objects 
 
 
 

Usually by statistical methods, 
e.g. Bayesian methods 
 
Probability to be at location s  
given an observation z: 
 P(s|z) =  P(z|s)·P(s) / P(z) 
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Where am I? 

Cognitive Robotics   Sensors 



Scene Interpretation 
 
Calculate mental attitudes of other actors using  
• communication 
• observation 
• behavior patterns 
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What will he do? 
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