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Motion 
Motion: 
Change of position(s) by certain actions/skills,  
e.g. for locomotion or manipulation. 
 
Great variety of natural and technical systems 
 
Formal description by mechanics  
(force, mass, displacement, velocity, acceleration) 
 
Problems in Robotics:  
How can motions be realized and controlled  
(hardware, software) 
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Cars 
  

How many degrees of freedom? 
Which poses can be reached? 

“MadeInGermany” 
Autonomos Labs (R.Rojas, FU Berlin) 
https://www.youtube.com/watch?v=nX-Ie6JSU5g 
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Humanoid Robots 
  

How many degrees of freedom? 
Which poses can be reached? 

Nao (Aldebaran) 

Myon  
(Dr. Manfred Hild,  
Neurorobotics Lab  
Humboldt University) 



Flying Robots 
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Cognitive Robotics Lab  
Prof. Verena Hafner, HU 
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Manipulators 

Karlsruhe 

Aachen 

HU Berlin (Torsten Siedel) 



Manipulators 
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Feeding Robot 
Bestic AB (Stockholm) 
Photo: Alice Öberg 
(Sweden.se) 

Surgical Robot DaVinci 
Photo Nader Moussa  
(WikiMedia) 



Manipulators 
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Photo: NASA 
(WikiMedia) 

Strawberry Harvesting Robot  
by Robotic Harvesting LLC 
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Joints 
•  Active: control with motors, pulleys, ... 
•             Problem: loading of gear axes 
•  Passive: Adaptation 
 

Maintaining rest position by drives, gravity, friction, preload,… 
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Joints of Nao from Aldebaran  
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21 active DOF (motors) 

• 2 head 
• 4 per arm 
• 5 per leg  
• 1 hip 



Nao in 
Simulation 
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y 
x z 

22 active DOF (motors): 

• 2 head 
• 4 per arm 
• 5 per leg  
• 2 hip 
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1 DOF Joints in Technique 
With 1 degree of freedom (DOF): 

– rotation joint 
– torsion joint 
– revolver joint 
– Linear joint (Translation joint., prismatic joint) 
 

Several DOF by combinations 
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Puma (Programmable Universal Manipulation Arm)  

  

6 rotation joints  (6 DOF) 
Which poses can be reached? 
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Degrees of Freedom (DOF)  
DOF is the 
 
• minimal number m of parameters p1,…,pm for complete 

description  
 
equivalently:  
• maximal number m of independent parameters p1,…,pm  
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Degrees of Freedom (DOF)  
DOF of poses 
(= parameters for complete description in work space):  
• point on plan   p=(x,y) ,       2 DOF   (2 position) 
• car on plane: p=(x,y,q),       3 DOF   (2 position, 1 orientation) 
• airplane:   p=(x,y,z, f,Y, q), 6 DOF   (3 position, 3 orientation) 
 
DOF of control parameters (in control/configuration space): 
independently movable parts (joints, wheels/axes, …) 

 
DOF of control may be active (actuated) or passiv 
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Degrees of Freedom (DOF)  
 
Reachable poses depend  
on morphology and environment 
 
 
 
 
Constraints C(p1,…pm) = 0  
for  parameters  
may reduce DOF 
 
 
 
 

DOF=1 DOF=4 
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Kinematics of Poses  
Kinematics (forward kinematics): 
• What is the pose? 
Inverse kinematics (reverse kinematics): 
• How to set the pose? 
 

 

Simplification in Kinematics: 
Neglect mass and force 



Burkhard Cognitive Robotics  Motion 20 

Work Space and Configuration Space 

End effector of an 
industrial robot: 
p=(x,y,z, f,Y, q)     
 
6 DOF:  
Ø 3 position,  
Ø 3 orientation    

(x,y,z, f,Y, q) 

Work space: „Relevant“ environment of the robot or some part. 
Pose p=(p1,…,pm) :  
Position/orientation of the robot or some part in work space 
(e.g. the pose of an end effector, of a camera etc.). 
 m = DOF of the pose in Workspace 
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Work Space and Configuration Space 
Configuration space:  
Configuration q=(q1,…,qn) :   parameters of joints etc.  
„generalized coordinates“, „control parameters" 
 
 
 
 
 
       

q1 

q2 

q3 

q4 

q5 

5 DOF 

q=(q1,…,q5)  

n = DOF in configuration space 
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Work Space and Configuration Space 

q1 

q2 

q3 

q4 

q5 

q=(q1,…,q5)  

(x,y,z, f,Y, q) 

Kinematics 

Inverse Kinematics 

(x,y,z, f,Y, q) 
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Work Space and Configuration Space 
  

Configuration Space 

Work Space 

From Russell/Norvig: 
Artificial Intelligence 



Work Space and Configuration Space 
Kinematics:  

Determine pose from configuration 
– Configuration determines pose uniquely 
 

Inverse Kinematics:  
Find a configuration for requested pose 
 
– Pose might be realized  
   by different configurations 
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 p = f(q)  

 q = f-1(p) 



Example „Planar Leg“ 
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q1 

x (q1, q2) 
 

q2 

Configuration space q1, q2  

q1 

q2 

X 

l2 

l1 

foot 
(x.y) 

Y 

Work space  x,y  
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Kinematics: 
 

 
–Rotation by Q1 

–Translation by l1 

–Rotation by Q2   

–Translation by l2 

 

q1 

q2 

X 

l2 

l1 

foot 
(x.y) 

Y 
Example „Planar Leg“ 
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Example „Planar Leg“ 
Inverse Kinematics: 
   (by cosine rule) 

cos (Q1) computable by the  

formula for forward kinematics 

q1 

q2 

X 

l2 

l1 

foot 
(x.y) 

Y 

2 possible solutions: 

 
 

l2 

l1 
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Kinematics: Calculate p = f(q) 
 
      Joints: Rotations 
       
      Limbs: Translations 
 



Kinematics: Coordinate Transformation 
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q1 

q2 

q3 

q4 

q5 

q=(q1,…,q5)  

Kinematics 

(X,Y,Z) 

(x,y,z) 

Kinematic chain 

From local coordinates  
to world coordinates 



Kinematics: Coordinate Transformation 
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q1 

q2 

q3 
q
4 q5 

Kinematic chain 

Coordinate transformation by a sequence of  
intrinsic rotations and translations 
along the cinematic chain. 
 
The ordering must be preserved. 
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Homogenous Coordinates for 3D 
4-dimensional vector  
   ( x/w, y/w, z/w, w ) with arbitrary w ¹0  represents (x,y,z) 
     
We will use (x, y ,z,1)   i.e. w=1 
 
The 4-dimensional matrix H 
can describe Rotation R 
followed by Translation T   
 
 
 
 
 
 

 1 

H ×   

x 
y 
z 

=× 
 

 0 

x 
y 
z 

R ×  + 

1 

T 

H = 
R T 

0   0   0 1 
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Homogenous Coordinates for 3D 
Sequence of transformations along cinematic chain 
can be described by matrix multiplications 
 
         M  =  H1×H2×H3×…Hn 
 

 
– Kinematics  
    by computing X  from X = M ×x for given M, x 
– Inverse Kinematics  
    by finding M=H1×H2×H3×…Hn  for given   X, x 
    (but usually by other calculations resp. approximations) 

 
 
 
 
 
 

X 
Y 
Z 
1 

=   M × 
x 
y 
Z 
1 

  X  =  M  × x 
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World coordinates in the shoulder. 

What are the coordinates (x,y,z) of the left forefoot? 

Calculation:  

by transformation of the foot coordinates to shoulder coordinates 

Diploma thesis 
Uwe Düffert 

Example:  
Kinematics AIBO 
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Transformation of the foot coordinates to shoulder coordinates: 
1. Translation lower leg: shift towards negative z axis  (l2 ). 
2. Rotation knee: rotate clockwise around y-axis (q3 ). 
3. Translation upper leg: shift towards negative z axis  (l1 ). 
4. Rotation shoulder 2: rotate counter-clockw. around x-axis (q2). 
5. Rotation shoulder 1: rotate clockwise around y-axis (q1 ). 

Diploma thesis 
Uwe Düffert 

Example:  
Kinematics AIBO 

Rot(-q1) Rot(q2) Trans(l1 )Rot(-q3) Trans(l2) 
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Example: Kinematics AIBO 
Rot(-q1) Rot(q2) Trans(l1) Rot(-q3) Trans(l2) 
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Example:  
Inverse 
Kinematics AIBO 
q3 (between l1,l2) 
by Cosine rule. 

Preferably bending 
forward: 

Positive solution. 

Calculate q1, q2 ,q3  for feet position (x,y,z) 
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Example: Inverse Kinematics AIBO 
  q2 by definition of Sine, 

where  | q2  |<= p/2  by 
anatomy  
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Example: Inverse Kinematics AIBO 
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Example: Inverse Kinematics AIBO 
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Example:  
Inverse 
Kinematics AIBO 

Calculate q1, q2 ,q3  

for feet position (x,y,z) 



Burkhard Cognitive Robotics  Motion 41 

Special Benefits in Calculations 
• Rotations in a plane (around joint axis) 
• Select "simple" solutions 
• Select "simple" relationships 
• Use arctan (better: atan2) instead of arcsin or arccos 
    ( because of large error propagation near -1/+1) 
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Kinematics of Drive Systems 
Kinematics (forward kinematics): 
• Where does it move to? 
Inverse kinematics (reverse kinematics): 
• How can it get there? 

 

Simplification: 
Neglect mass and force 



Kinematics of Drive Systems 
• Driven wheels or chains 
• Further wheels as stabilizers or for odometry 
• Controlable wheels 
 
Idealizing assumptions: 
• Wheels run straight (perpendicular to the axis) 
• Forward movement per complete rotation: 2pr for radius r 
• Forward movement per rotation about w:    wr for radius r 
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Drives for Vehicles on a Plane 
Work space: 
Pose (x,y, q) with 3 DOF  
 

q = 0   in x-direction 

V(t) = (Vx (t), Vy(t)) and w(t) are control parameters for motion. 
They depend on position and speeds of driving wheels. 

q 

x 

y 

v 
w 
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Kinematics/Inverse Kinematics 
Kinematics: Calculate motion from control.                 

òo 
t 

q(t) =      w(t) dt 

òo 
t 

x(t) =      Vx(t) dt  =     V(t) cos [q(t)] dt òo 
t 

òo 
t 

y(t) =      Vy(t) dt  =     V(t)  sin [q(t)] dt òo 
t 

Inverse Kinematics:  
Which control V and w is needed for desired motion? 
Options depend on kind of drive. 

Change from pose (0,0,0) to  (x(t),y(t),q(t)) 
by speed V(t)= (Vx (t), Vy(t)) in direction w(t)   
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Drives for Vehicles on a Plane 
Configuration space: 
 
Options for control: 
• Speeds of the driving wheels 
• Directions of the wheels / axes 
 
Limitations by constraints  
e.g.  
• connections between wheels 
• Dependency between direction and speed of wheels 
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ICC = instantaneous center of curvature 
ICC defined as intersection point of all axes 
 
 
 
Constraints for smooth motion: 
• ICC exists 
• Consistent speed of driving wheels 

 
Otherwise: 
• Robot loses traction 
• Robot slides, unpredictable motion 

 

Images from  
Borenstein et.al.: 
Where am I? 
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ICC = instantaneous center of curvature 
 
Robot moves on a circle around ICC. 
 

(Straight move for parallel axes: 
ICC infinitely far.) 

  
 
ICC can be changed by 
• steering of axes/wheels 
• different speeds of driving wheels 



Kinematics by ICC 
Position of ICC for robot at pose (x,y, q) : 
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Pose of Robot after time dt 
while robot rotates wdt around ICC: 
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Synchrodrive 
All wheels in same steerable direction w with identical speed. 
ICC infintely far perpendicular to direction w 
 
          

Control:   
Speed v  and direction w  
of wheel(s) 
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Differential Drive 
Driving wheels on 1 axis with different speeds 
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Differential Drive 
ICC on the axis, position depends on vl ,vr 

 vl =  vr   moves straight on 
 vl = -vr   turns around 

    

Control:   
Speeds vl  and vr 
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Differential Drive: Kinematics 
  

Change from pose (0,0,0) to  (x(t),y(t),q(t)) 
by speeds vl  and vr  of left and right wheel 
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Differential Drive: Inverse Kinematics 
  
 

Many different solutions to arrive at a given target. 
 
No motion in direction of the axis (towards ICC). 

Which controls vl(t),vr(t) result indesired motion? 
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Differential Drive: Inverse Kinematics 
  
 

Special cases: 

Turn on place 

Forward motion 



Burkhard Cognitive Robotics  Motion 57 

AIBO: „Wheel model“ (Differential Drive) 
Curved motion by different speeds of legs.  

ICC 
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Controlled Wheels 
One (or more connected) steerable wheels, other wheels passiv: 
Bicycle, Tricycle, Wagon etc. 
ICC on the axis of passive wheel(s), position depends on w 

 
 

ICC 

Control:   
Speed v  and direction w  
of steerable wheel(s) 

w 

w 

R = l sin w  
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Ackermann-Drive: Automobile 
Front wheels are individually steerable 

Control (WLOG): 
Speed vr  and direction wr   
of right wheel (speed vl  and 
direction wl  of left wheel is 
then determined) 

ModelI with ICC like for tricycle by a phantom wheel at P2 

ICC 



Characteristica of Drives: 
 
Rotation on place:  
• Differential drive  
• Tricycle, Ackerman only for w = 900 (with stability problems) 
 
Differential drive: 
- Uneven terrain and sliding results in direction errors for. 
Tricycle, Ackerman: 
- Complicated maneuvers (parking!) 
Ackerman: 
- Improved stability by separated (and slanted) front wheels 
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Mostly 2 control parameters  
for 3 spatial DOF 
ØNonholonomic drives 
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Degrees of Freedom (DOF) - continued  
DOF is in both work space resp. configuration space the 
• minimal number of parameters for complete description  
equivalently:  
• maximal number of independent parameters 

 
   Work space:               effective DOF 
 
  Configuration space:   controlable DOF  
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Number of effective DOF  
i.g. different from number of controlable DOF. 
 
•  All poses in work space may be reachable even in case of 
    effective DOF > controlable DOF   
    (e.g. differential drive) 
 
      
•  effective DOF < controlable DOF 
   is useful in case of obstacles 

Degrees of Freedom (DOF) - continued  
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Nonholonomic Drive Systems 
·          ·   
 Nonholonomic Constraints C(p1,…pn, p1,…pn,t) = 0 

impose dependencies of paramaters and their derivatives. 

Holonomic Constraints  
C( p1,…,pn,t) = 0  
impose dependencies  
of parameters. 

Nonholonomic Constraint:  
tanq =vy /vx       i.e.      vx sinq - vy cosq = 0 
cosq=0  for q=p/2   implies  vx=0 : 
No motion in direction of axis (e.g. for differential drive) 
 

q 

V =(vx,vy)  
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Holonomic Drive Systems 
Most drive systems are nonholonomic  
and have only 2 controllable parameters 
 
Holonomic drives:  
• Omnidirectional drive  
    (Control by separate motors of wheels) 
 

 
• Synchrodrive for rotationally symmetric vehicles  
    (2 spatial DOF)  
• Synchrodrive with additional body rotation 

Fufighters 
FU Berlin 
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Trajectories 
Trajectory in work space/configuration space:  
Sequence of spatial parameters (positions/poses of the  
robot or its parts) or of control parameters at different times, 
 e.g.  
• trajectory of CoM (center of mass) 
• trajectory of feets 
• trajectory of limb angles 
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 Diploma Thesis U. Düffert 
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Trajectories  
Set of poses p(t) and corresponding configurations q(t): 
 

… 

Motion planning: Find realistic (and optimal) trajectories.  
The trajectories in the figures are not realistic. 



Trajectories of Keyframes 
Sequence of Keyframes:  
Characteristic poses during a motion (“like in a comic”). 
Originally used in animated movies. 
 
Transition times define speed to reach next pose. 
Poses between keyframes must be interpolated.  
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Keyframe 

Burkhard Cognitive Robotics  Motion 

Time 1000 
HeadPitch HeadYaw  0 
RShoulderPitch LShoulderPitch 120 
RShoulder RollLShoulderRoll 0 
RElbowRoll 90 
LElbowRoll -90 
RElbowYaw 90 
LElbowYaw -90 
RHipYawPitch LHipYawPitch 0 
RHipPitch LHipPitch -31 
RHipRoll LHipRoll 0 
RKneePitch LKneePitch 63 
RAnklePitch LAnklePitch -31 
…. 

 

Complete set of joint angles 
to be set in given time 
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Motion Skill: Sequence of Keyframes 
300 0 -21 -62 32 -69 -59 0 -8 -10 -0 12 14 0 -8 12 -0 -9 11 -110 -60 69 59 
300 -5 -21 -62 46 -69 -59 0 0 -10 -0 17 5 0 0 18 -0 -9 4 -110 -46 69 59 
300 0 -21 -62 60 -69 -59 0 8 -10 -0 12 -11 0 8 12 -0 -3 -11 -110 -32 69 59 
300 0 -21 -75 60 -69 -59 0 8 6 -36 27 -11 0 8 12 -15 7 -11 -97 -32 69 59 
300 0 -21 -86 60 -69 -59 0 8 42 -69 13 -11 0 8 12 -30 23 -11 -86 -32 69 59 
300 0 -21 -110 60 -69 -59 0 8 12 -0 -9 -11 0 8 -10 -0 12 -14 -62 -32 69 59 
300 -5 -21 -110 46 -69 -59 0 0 18 -0 -9 -4 0 0 -10 -0 17 -5 -62 -46 69 59 
300 0 -21 -110 32 -69 -59 0 -8 12 -0 -3 11 0 -8 -10 -0 12 11 -62 -60 69 59 
300 0 -21 -97 32 -69 -59 0 -8 12 -15 7 11 0 -8 6 -36 27 11 -75 -60 69 59 
300 0 -21 -84 32 -69 -59 0 -8 12 -30 23 11 0 -8 42 -69 13 11 -84 -60 69 59 

FILE  walk_forward-flemming-nika.txt 
in …/keyframes 

Each line starts with the transition time followed by the target 
angles of joints in a predefined order.  
RoboNewbie: 
Keyframe sequences are “played” by class keyframeMotion.  
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Order of Joints in RoboNewbie Keyframes 

NeckYaw = 0   
NeckPitch = 1 
LeftShoulderPitch =2 
LeftShoulderYaw = 3   
LeftArmRoll = 4   
LeftArmYaw = 5   
LeftHipYawPitch = 6   
LeftHipRoll = 7   
LeftHipPitch = 8   
LeftKneePitch = 9   
LeftFootPitch = 10   
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LeftFootRoll = 11   
RightHipYawPitch = 12 
RightHipRoll = 13   
RightHipPitch = 14   
RightKneePitch = 15   
RightFootPitch = 16  
 RightFootRoll = 17   
RightShoulderPitch = 18 
RightShoulderYaw = 19 
RightArmRoll = 20   
RightArmYaw = 21  
 

Cognitive Robotics  Motion 
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Keyframes: MotionNets 
  Cycles: Repeated motions (e.g. walking) 

Conditional Branches (e.g. stop motion) 

Motion Editor  
could be  
extended for 
Motion Nets 
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Keyframes 
  Simple implementation 
Simple design (especially with “teaching”) 
But motions can not adapt 
 
Best suited for short sequences (stand-up, kick) 
 
 



Usage of Trajectories for Motion Planning 
Find a trajectory (path) of the robot or a part of the robot  
in work space or configuration space  
which satisfies certain conditions, e.g. 
 
• Motion from start to destination while avoiding obstacles 
• Motion of a limb while maintaining stability 
• Motion of a manipulator to grasp an object 
 
Side conditions may be 
time, energy, smoothness, stability, safety… 
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Appropriate trajectories can be found e.g.  
by physical models or by Machine Learning 



Usage of Trajectories for Motion Control 
Control the actuators (joint, limbs,…) such that  
the robot or a part of the robot follows a given trajectory. 
 
Inverse kinematics  
can be used to find the appropriate control parameters.  
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Shift CoM following a (straight) trajectory  
implies trajectories of feet, e.g. semi-ellipses or parallelograms. 
Related joint controls by inverse kinematics.  
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Planning 
 … is a broad field in AI with many different methods. 
 
Planning can be used for motions and for more complex 

behaviors (different time horizons). 
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Here: Some useful methods for motion planning 
 
 
Later: Behavior planning  



Motion Planning vs. Control 
Robot can  
• plan motions (and more complex behavior) before execution 
• execution is then performed by appropriate control  
 
Robot Control can be performed as  
• Open loop control: 
    Preplanned motions performed without sensor feedback. 
• Closed loop control:  
    Sensor feedback is used for adaptation of intended motions. 
 
Some planning methods lead directly to controls 
(e.g. potential fields).  
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(“blind” control) 



Motion Planning vs. Control 
 
Alternative for Planning:  
 
Online motion control  
by immediate reactions to sensor measurements  
(e.g. for maintaining balance) 
 
• sensor actor coupling 
• behavioral robotics 
• emergence principle 
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Ø later more 
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Teaching 
• Set „characteristic poses“ of a motion  
       by hand (at real robot) or by motion editor 
• Protocol joint angles of each such pose as keyframe 
       resulting in a sequence of keyframes 
• Optimize (transition times, smoothing, …)  
       e.g. by machine learning 



Burkhard Cognitive Robotics  Motion 81 

Motion Editor from Bioloid Manual (2006) 
 



Burkhard Cognitive Robotics  Motion 82 

Motion-Capturing 
Imitate demonstrated motions   
 
 
 
 
 
Markers at important points 
Record motions (3D Motion Tracker) 
Implement related control (e.g. by analyzing the motion)  

From IROS 2007 
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Motion Planning 
Optimality of a trajectory may concern 

– Length of path 
– Time 
– Smoothness 
– Stability 
– Safety 
– Energy consumption 
– Esthetics  
– … 

Planning can be performed  
in work space or configuration space 
using path planning algorithms (e.g. A*) 

 
Images 
Russell/Norvig: Artificial Intelligence 
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Planning in Configuration Space 
  

Results of planning in 
configuration space can 
be directly used as 
control for motion in 
work space. 

Special regions in the configuration space for 
• obstacles in work space (gray), 
• geometry of the robot (black) 

 



Burkhard Cognitive Robotics  Motion 85 

Grid Based Search in Configuration Space  
 e.g. using graph search methods like A* 
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Skeleton Based Search in Configuration Space  
Skeleton: Connects certain points.  
Search for path on skeleton. 
• as Voronoi-Graph: 
       points with equal minimal  
       distances to obstacles 
 
• as Visibility Graph: 
       Nodes at corners of obstacles 
       Arcs between mutually observable nodes 

Problems: 
• complex algorithms 
• results often in detours 
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Random Point Search in Configuration Space 

Graph search through random points in free space. 
Ranking of preferable areas by differently distributed points. 
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Potential Field in Configuration Space 
„Potentials at the field“: 

– Target attracts 
– Obstacles repel 
 

 

Can be used as control: 
Robot follows attractions in the potential field. 

Can be combined with other 
search methods. 
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Potential field 
Control in a point (x0,y0) 
as direction vector [Fx(x0,y0), Fy (x0,y0)]  
of  vector field  F(x, y) = [Fx (x,y), Fy(x,y)]  
 
Special case:  
Vector field F(x, y) is gradient of a potential field U(x, y)  
       F(x, y) =   [ dU(x, y) / dx , dU(x, y) / dy ]  
 
For application: 
• Potential determined by environment/from sensory 

information 
• Motion follows the gradient 
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Potential field 
              

e.g.  
Ugoal(p) = a dist(p,goal)2 

e.g.  
Uobstacle(p) = b dist(p,obstacle)-1 

target:               
attracting field 

obstacles:        
repelling fields 
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Potential field 
Potential field by superposition (addition): 
 U(p) = Ugoal(p) + S Uobstacle(p)  

    F  =  -  [ dU / dx , dU / dy ]     



Burkhard Cognitive Robotics  Motion 92 

Potential field 
Benefits: 
• direct usage for control 
• local evaluation 
 
Problems: 
• local minima 

•    Compensation of fields, 
•    "Trap“ by close obstacles 

• oscillating movements for  
• narrow areas 
• high speed 
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Potential field 
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Potential  
field 
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Potential field 
Additional other fields, e.g. 
• rotating fields 
• random fields  
can 
• specify directions 
• break symmetries 
• avoid (some) local minima 
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