Cognitive Robotics

Motion (part 1)

Hans-Dieter Burkhard, Marija Brkic Bakaric October 2014

Outline

Introduction

- **Kinematics of Poses**
- **Kinematics of Drive Systems**
- Trajectories
- **Motion Planning**
- Motion Control
- Motions of Legged Robots
- **Optimization/Learning of Motions**
- **Biologically Inspired Motions**

Motion

Motion:

Change of position(s) by certain actions/skills,

e.g. for locomotion or manipulation.

Great variety of natural and technical systems

Formal description by mechanics (force, mass, displacement, velocity, acceleration)

Problems in Robotics:

How can motions be realized and controlled (hardware, software)

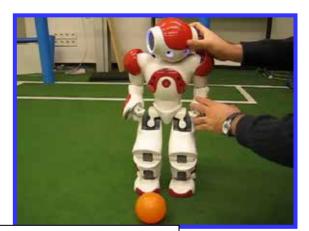
Burkhard

Cars

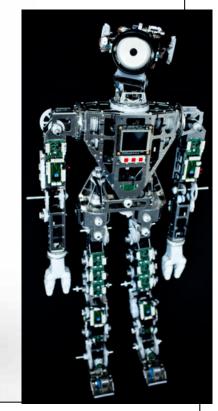
"MadeInGermany" Autonomos Labs (R.Rojas, FU Berlin) https://www.youtube.com/watch?v=nX-le6JSU5g

How many degrees of freedom? Which poses can be reached?

Humanoid Robots



Nao (Aldebaran)



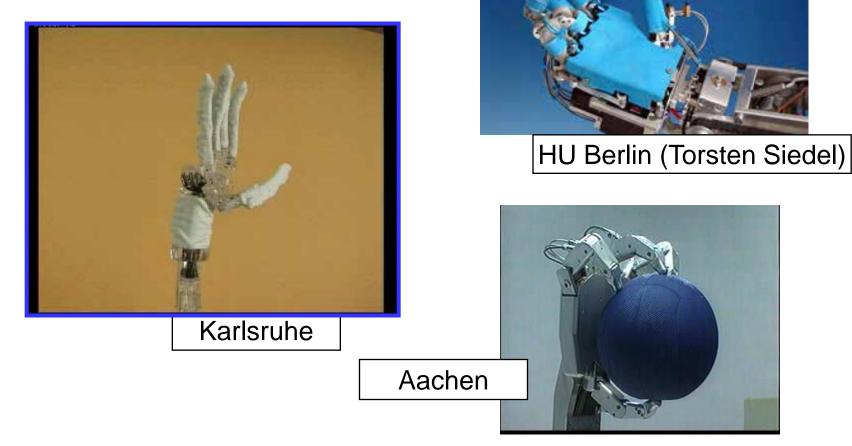
How many degrees of freedom? Which poses can be reached? Myon (Dr. Manfred Hild, Neurorobotics Lab Humboldt University)

Burkhard

Flying Robots

Cognitive Robotics Lab Prof. Verena Hafner, HU

Manipulators



Manipulators

Surgical Robot DaVinci Photo Nader Moussa (WikiMedia)

Feeding Robot Bestic AB (Stockholm) Photo: Alice Öberg (Sweden.se)

Manipulators

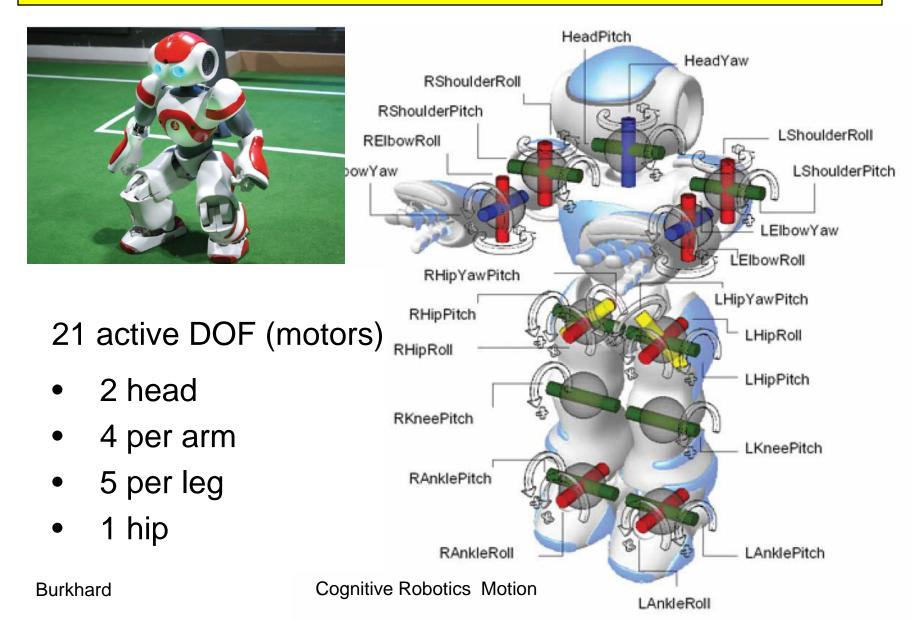
Strawberry Harvesting Robot by Robotic Harvesting LLC

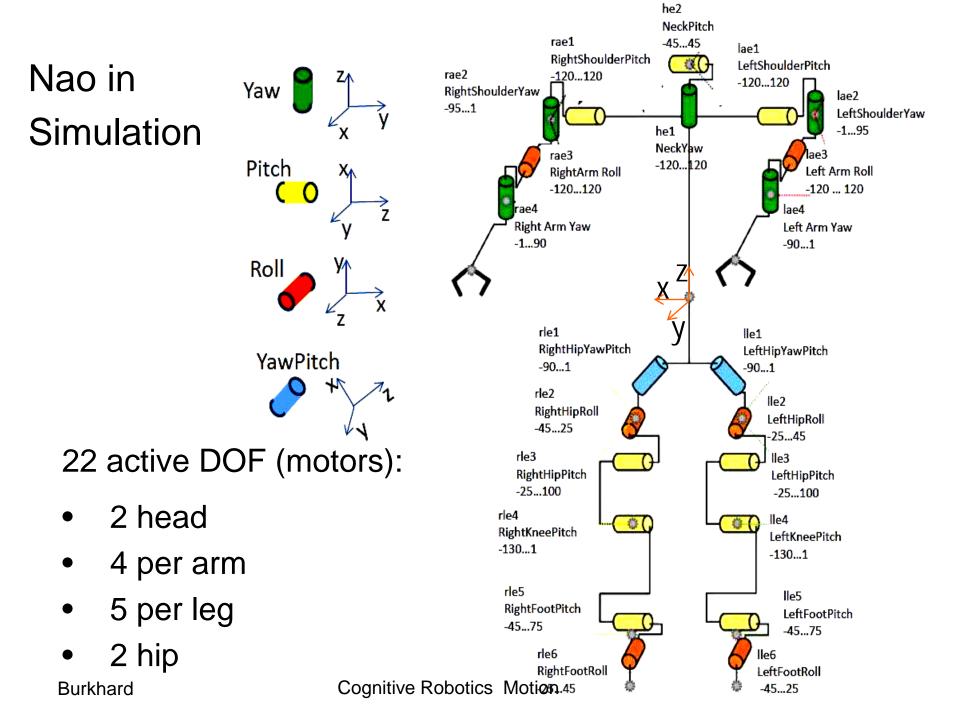
Joints

- Active: control with motors, pulleys, ...
- Problem: loading of gear axes
- Passive: Adaptation

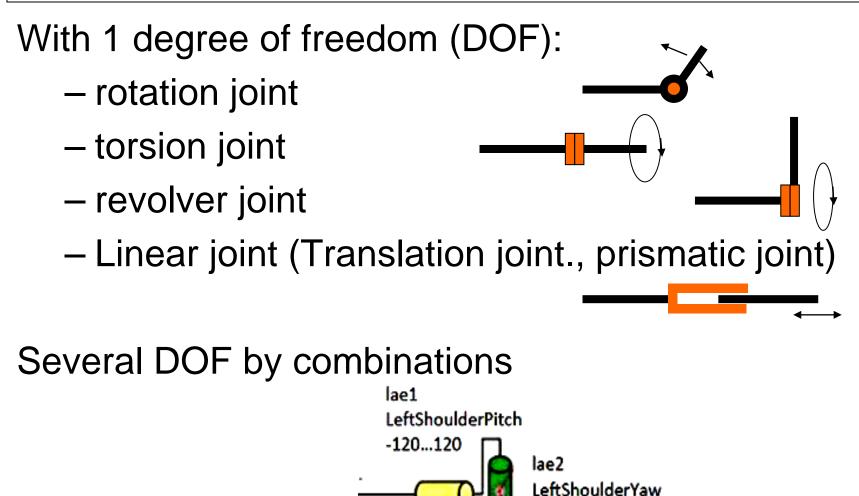
Maintaining rest position by drives, gravity, friction, preload,...

Joints of Nao from Aldebaran

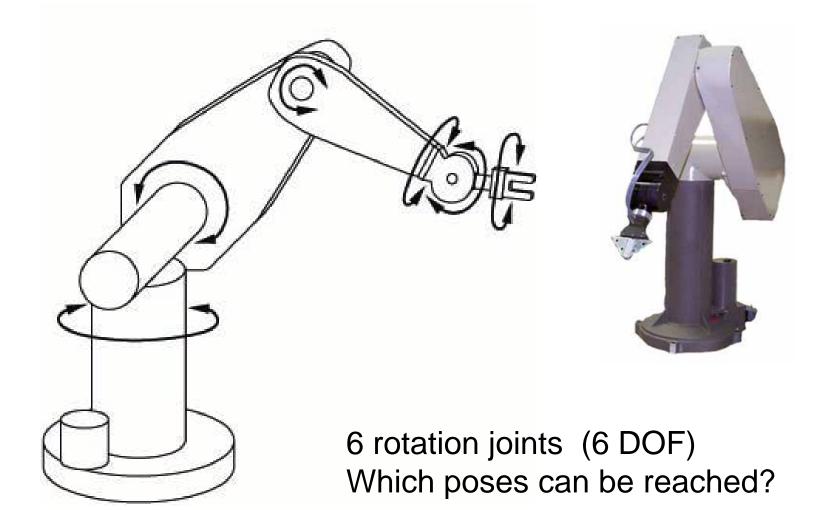




1 DOF Joints in Technique



Puma (Programmable Universal Manipulation Arm)



Degrees of Freedom (DOF)

DOF is the

minimal number *m* of parameters *p*₁,...,*p*_m for complete description

equivalently:

• maximal number *m* of independent parameters p_1, \ldots, p_m

Degrees of Freedom (DOF)

DOF of poses

(= parameters for complete description in work space):

- point on plan p=(x,y), 2 DOF (2 position)
- car on plane: p=(x,y,q), 3 DOF (2 position, 1 orientation)
- airplane: p=(x,y,z, f,Y, q), 6 DOF (3 position, 3 orientation)

DOF of control parameters (in control/configuration space): independently movable parts (joints, wheels/axes, ...)

DOF of control may be *active* (actuated) or *passiv*

Degrees of Freedom (DOF)

Reachable poses depend on morphology and environment

Constraints $C(p_1,...p_m) = 0$ for parameters may reduce DOF DOF=1DOF=4DOF=4

Outline

Introduction

Kinematics of Poses

Kinematics of Drive Systems

- Trajectories
- Motion Planning
- **Motion Control**
- Motions of Legged Robots
- **Optimization/Learning of Motions**
- **Biologically Inspired Motions**

Kinematics of Poses

Kinematics (forward kinematics):

• What is the pose?

Inverse kinematics (reverse kinematics):

• How to set the pose?

Simplification in Kinematics:

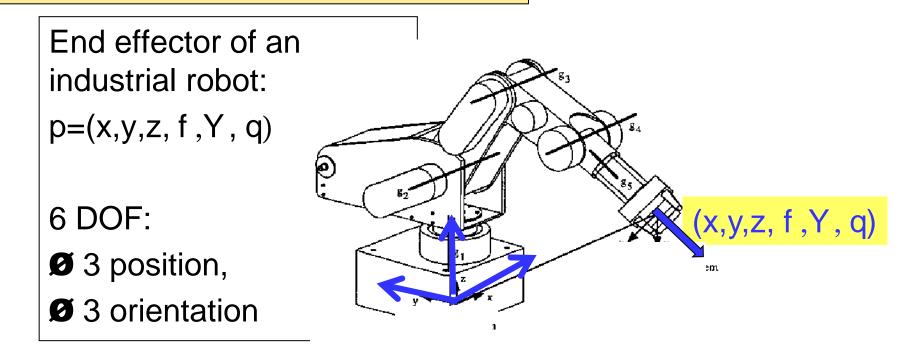
Neglect mass and force

Work space: "Relevant" environment of the robot or some part. **Pose** $p=(p_1,...,p_m)$:

Position/orientation of the robot or some part in work space

(e.g. the pose of an end effector, of a camera etc.).

m = DOF of the pose in Workspace

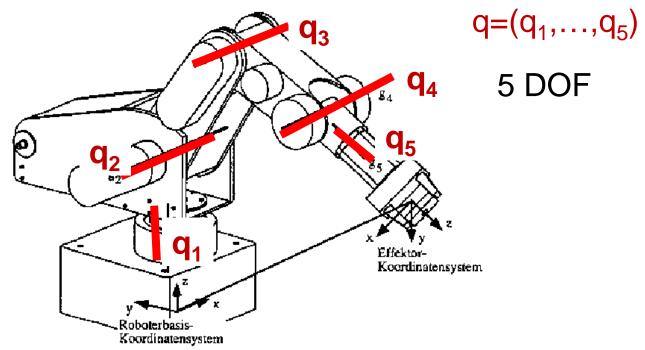


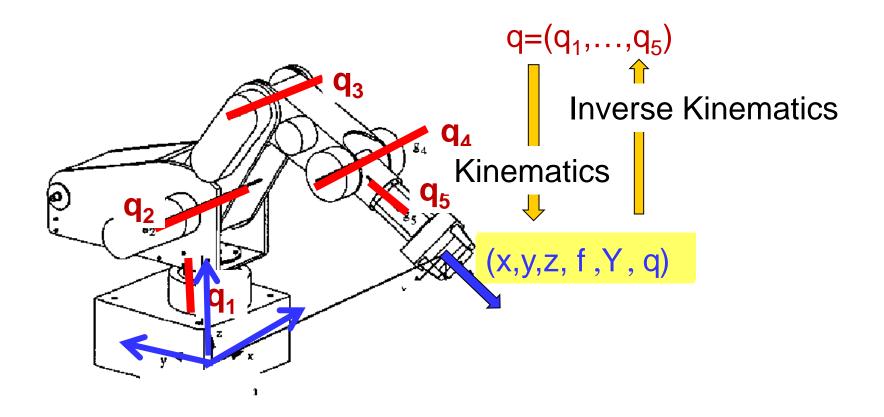
Configuration space:

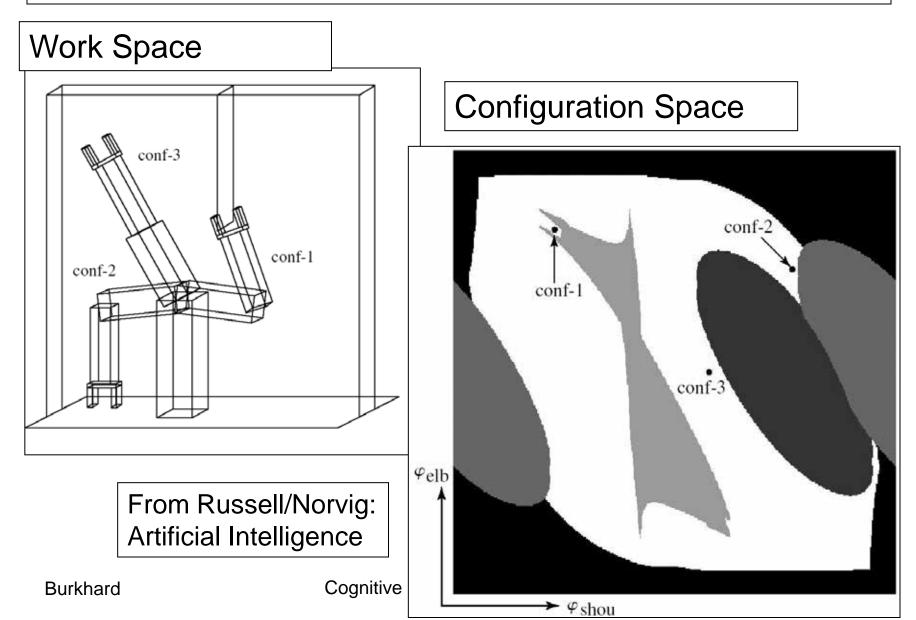
Configuration $q=(q_1,...,q_n)$: parameters of joints etc.

",generalized coordinates", "control parameters"

n = DOF in configuration space







p = f(q)

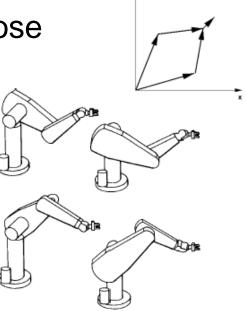
Kinematics:

Determine pose from configuration

- Configuration determines pose uniquely

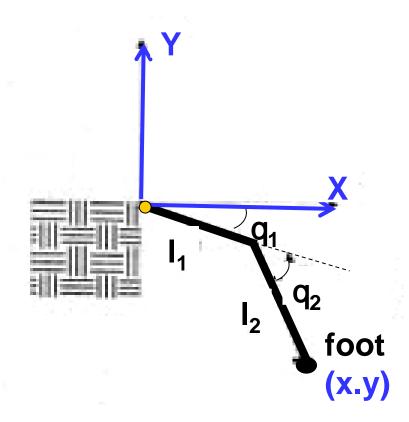
Inverse Kinematics: $q = f^{-1}(p)$ Find a configuration for requested pose

 Pose might be realized by different configurations

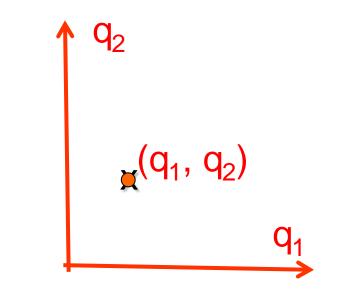


Example "Planar Leg"

Work space x,y



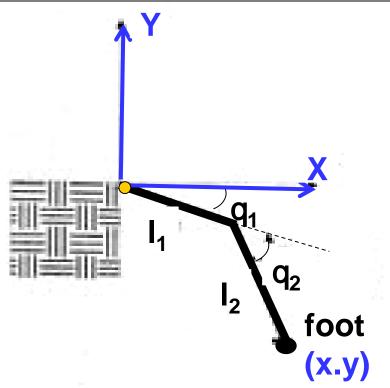
Configuration space q₁, q₂



Example "Planar Leg"

Kinematics:

- –Rotation by Q_1
- –Translation by I_1
- -Rotation by Q₂
- -Translation by I₂



$$\begin{bmatrix} x \\ y \end{bmatrix} = l_1 \begin{bmatrix} \cos(\theta_1) \\ \sin(\theta_1) \end{bmatrix} + l_2 \begin{bmatrix} \cos(\theta_1 + \theta_2) \\ \sin(\theta_1 + \theta_2) \end{bmatrix}$$

Example "Planar Leg"

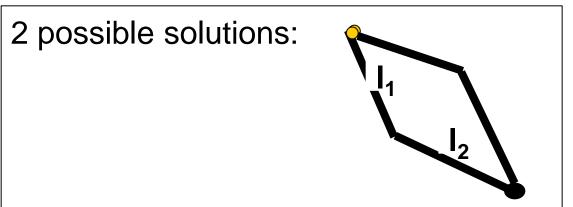
Inverse Kinematics:

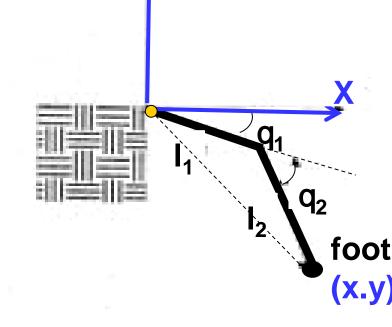
(by cosine rule)

$$\cos(\theta_2) = \frac{x^2 + y^2 - l_1^2 - l_2^2}{2l_1 l_2}$$

 $\cos(Q_1)$ computable by the

formula for forward kinematics

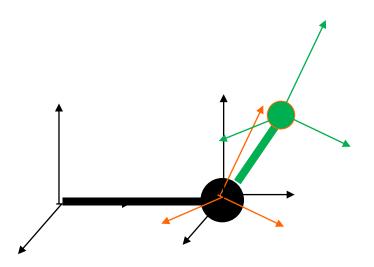




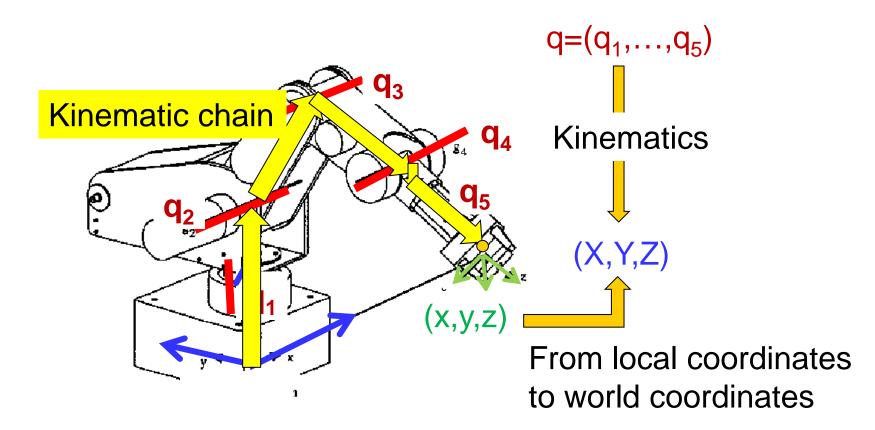
Kinematics: Calculate p = f(q)

Joints: Rotations

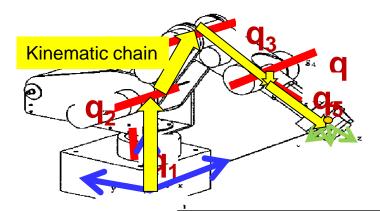
Limbs: Translations



Kinematics: Coordinate Transformation



Kinematics: Coordinate Transformation



Coordinate transformation by a sequence of intrinsic rotations and translations along the **cinematic chain**.

The ordering must be preserved.

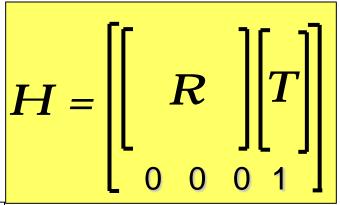
Homogenous Coordinates for 3D

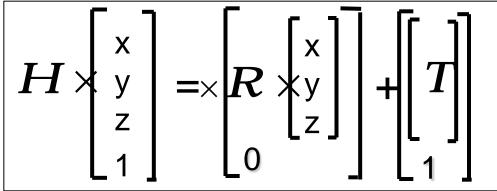
4-dimensional vector

(x/w, y/w, z/w, w) with arbitrary w 1 0 represents (x,y,z)

We will use (x, y, z, 1) i.e. w=1

The 4-dimensional matrix H can describe Rotation R followed by Translation T



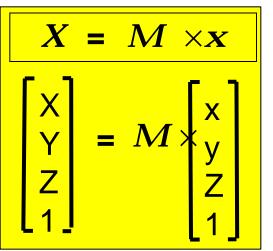


Homogenous Coordinates for 3D

Sequence of transformations along cinematic chain

can be described by matrix multiplications

$$M = H_1 \times H_2 \times H_3 \times \dots H_n$$



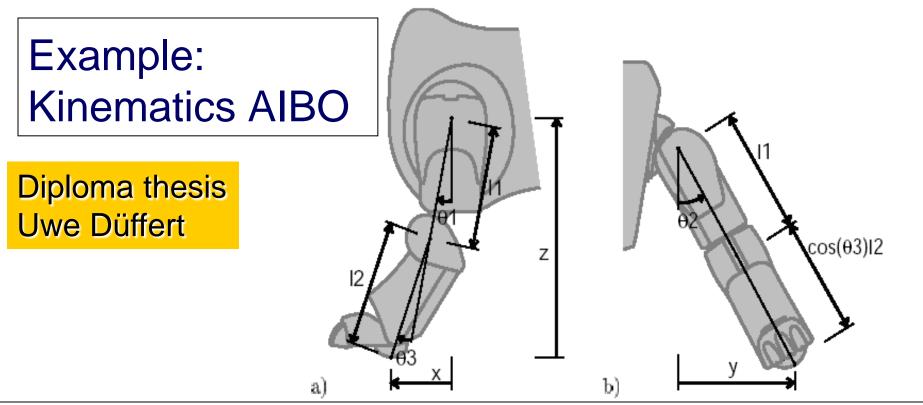
– Kinematics

by computing X from $X = M \times x$ for given M, x

Inverse Kinematics

by finding $M = H_1 \times H_2 \times H_3 \times ... H_n$ for given X, x

(but usually by other calculations resp. approximations)

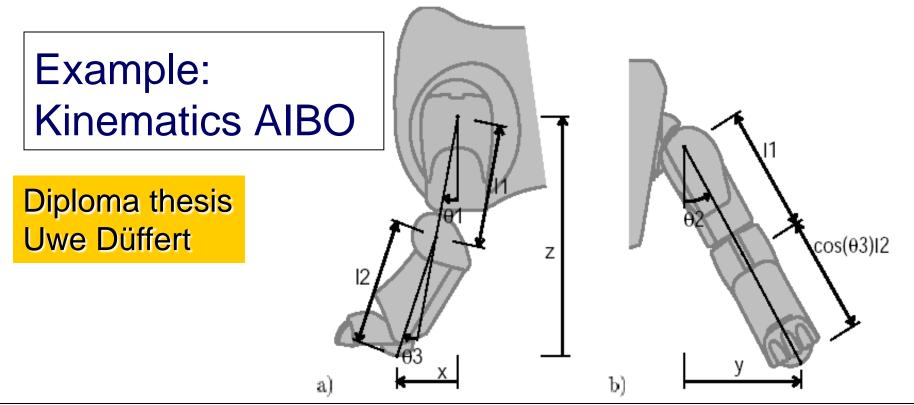


World coordinates in the shoulder.

What are the coordinates (x,y,z) of the left forefoot?

Calculation:

by transformation of the foot coordinates to shoulder coordinates



Transformation of the foot coordinates to shoulder coordinates:

- 1. Translation lower leg: shift towards negative z axis (I_2) .
- 2. Rotation knee: rotate clockwise around y-axis (q_3) .
- 3. Translation upper leg: shift towards negative z axis (I_1) .
- 4. Rotation shoulder 2: rotate counter-clockw. around x-axis (q_2) .
- 5. Rotation shoulder 1: rotate clockwise around y-axis (q_1).

Rot(-q₁) Rot(q₂) Trans(I_1)Rot(-q₃) Trans(I_2)

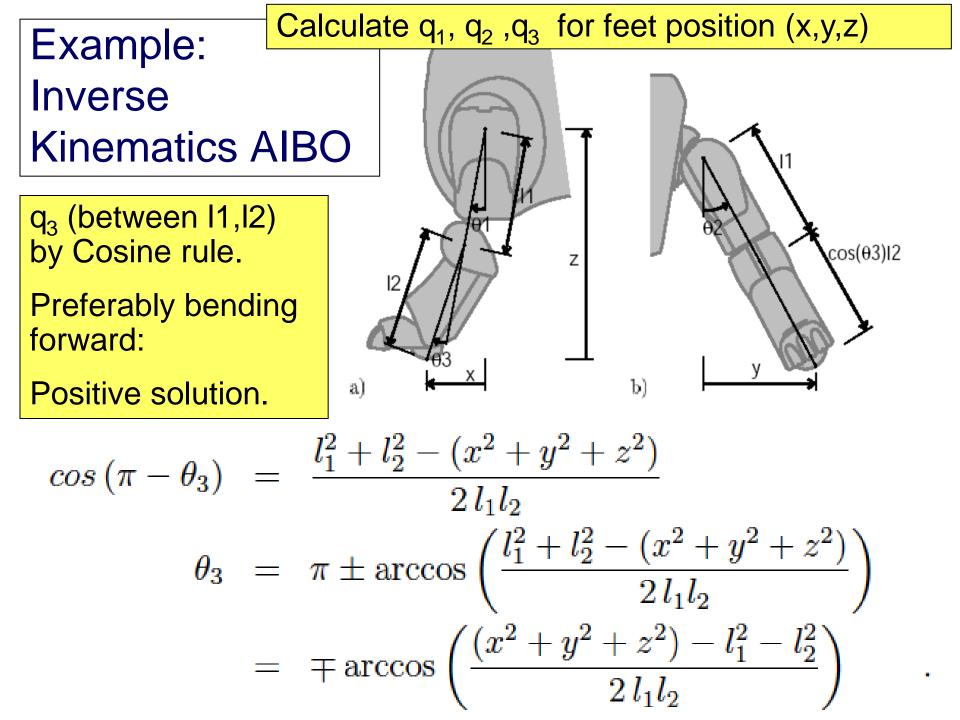
Example: Kinematics AIBO Rot(-q₁) Rot(q₂) Trans(I₁) Rot(-q₃) Trans(I₂)

$$\begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \operatorname{Rot}_{y}(-\theta_{1}) \cdot \operatorname{Rot}_{x}(\theta_{2}) \cdot \operatorname{Trans} \begin{pmatrix} 0 \\ 0 \\ -l_{1} \end{pmatrix} \cdot \operatorname{Rot}_{y}(-\theta_{3}) \cdot \operatorname{Trans} \begin{pmatrix} 0 \\ 0 \\ -l_{2} \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ 0 \\ -l_{2} \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} \cos(\theta_{1}) & 0 & -\sin(\theta_{1}) & 0 \\ 0 & 1 & 0 & 0 \\ \sin(\theta_{1}) & 0 & \cos(\theta_{1}) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\theta_{2}) & -\sin(\theta_{2}) & 0 \\ 0 & \sin(\theta_{2}) & \cos(\theta_{2}) & 0 \\ 0 & \sin(\theta_{2}) & \cos(\theta_{2}) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \sin(\theta_{3}) & 0 & \cos(\theta_{3}) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \sin(\theta_{3}) & 0 & \cos(\theta_{3}) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -l_{2} \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

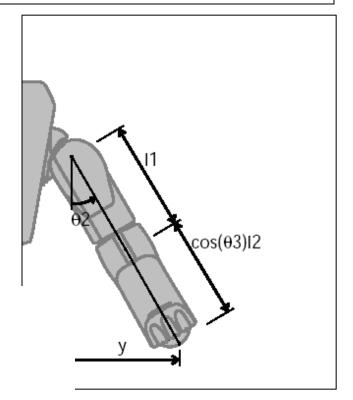
$$= \begin{pmatrix} l_{2}\cos(\theta_{1})\sin(\theta_{3}) + l_{2}\sin(\theta_{1})\cos(\theta_{2})\cos(\theta_{3}) + l_{1}\sin(\theta_{1})\cos(\theta_{2}) \\ l_{1}\sin(\theta_{2}) + l_{2}\sin(\theta_{2})\cos(\theta_{3}) + l_{1}\sin(\theta_{1})\cos(\theta_{2}) \\ l_{2}\sin(\theta_{1})\sin(\theta_{3}) - l_{2}\cos(\theta_{1})\cos(\theta_{2})\cos(\theta_{3}) - l_{1}\cos(\theta_{1})\cos(\theta_{2}) \\ 1 \end{pmatrix}$$



Example: Inverse Kinematics AIBO

 q_2 by definition of Sine, where $|q_2| \le p/2$ by anatomy

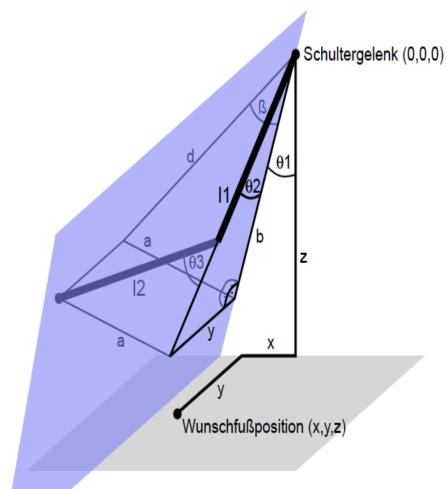
$$y = \sin(\theta_2) \cdot (l_1 + l_2 \cdot \cos(\theta_3))$$
$$\theta_2 = \arcsin\left(\frac{y}{l_1 + l_2 \cos(\theta_3)}\right)$$



Example: Inverse Kinematics AIBO

 $a = l_2 \sin(\theta_3)$ $b = (l_1 + l_2 \cos(\theta_3)) \cos(\theta_2)$ $d = \sqrt{a^2 + b^2}$ $\beta = \arctan(b, a)$

 $a = d\cos(\beta)$ $b = d\sin(\beta)$



Example: Inverse Kinematics AIBO

 $\begin{aligned} x &= l_2 \cos(\theta_1) \sin(\theta_3) + l_2 \sin(\theta_1) \cos(\theta_2) \cos(\theta_3) + l_1 \sin(\theta_1) \cos(\theta_2) \\ &= a \cos(\theta_1) + b \sin(\theta_1) \\ &= d \cos(\theta_1) \cos(\beta) + d \sin(\theta_1) \sin(\beta) \\ &= d \cos(\theta_1 + \beta) \\ z &= d \sin(\theta_1 + \beta) \end{aligned}$

$$\theta_1 + \beta = \arctan(z, x)$$

 $\theta_1 = \arctan(z, x) - \beta$

Example: Inverse Kinematics AIBO

Calculate q_1 , q_2 , q_3 for feet position (x,y,z)

$$\theta_{3} = \arccos\left(\frac{x^{2} + y^{2} + z^{2} - l_{1}^{2} - l_{2}^{2}}{2 l_{1} l_{2}}\right)$$

$$\theta_{2} = \arcsin\left(\frac{y}{l_{1} + l_{2} \cos(\theta_{3})}\right)$$

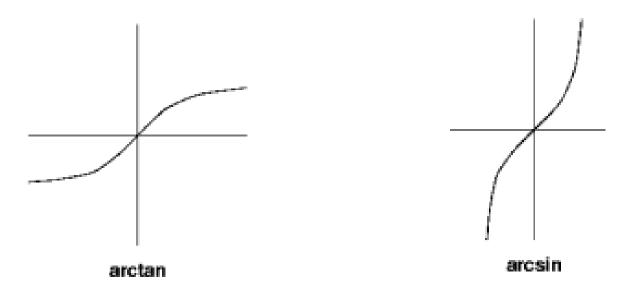
$$\theta_{1} = \arctan(z, x) - \arctan\left(\left(l_{1} + l_{2} \cos(\theta_{3})\right)\cos(\theta_{2}), l_{2} \sin(\theta_{3})\right)$$

Burkhard

Cognitive Robotics Motion

Special Benefits in Calculations

- Rotations in a plane (around joint axis)
- Select "simple" solutions
- Select "simple" relationships
- Use arctan (better: atan2) instead of arcsin or arccos
 (because of large error propagation near -1/+1)



Outline

Introduction Kinematics of Poses **Kinematics of Drive Systems** Trajectories Motion Planning Motion Control Motions of Legged Robots **Optimization/Learning of Motions Biologically Inspired Motions**

Kinematics of Drive Systems

Kinematics (forward kinematics):

• Where does it move to?

Inverse kinematics (reverse kinematics):

• How can it get there?

Simplification:

Neglect mass and force

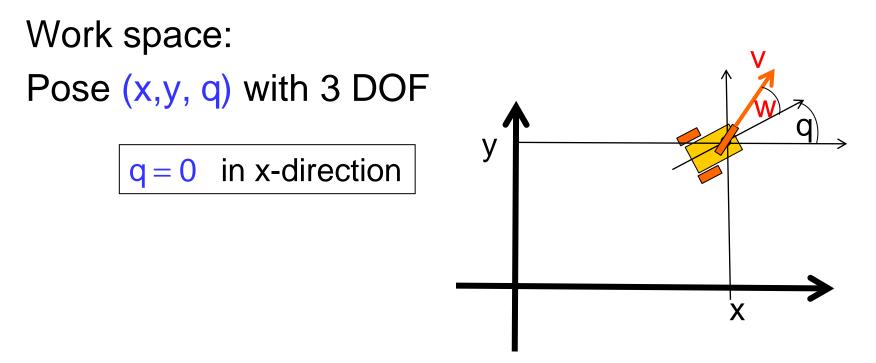
Kinematics of Drive Systems

- Driven wheels or chains
- Further wheels as stabilizers or for odometry
- Controlable wheels

Idealizing assumptions:

- Wheels run straight (perpendicular to the axis)
- Forward movement per complete rotation: 2pr for radius r
- Forward movement per rotation about w: wr for radius r

Drives for Vehicles on a Plane



 $V(t) = (V_x(t), V_y(t))$ and W(t) are *control parameters* for motion. They depend on position and speeds of driving wheels.

Kinematics/Inverse Kinematics

Kinematics: Calculate motion from control.

Change from pose (0,0,0) to (x(t),y(t),q(t))by speed V(t)= (V_x(t), V_y(t)) in direction w(t)

$$\begin{aligned} \mathbf{x}(t) &= \mathbf{\dot{Q}}^{t} \quad V_{\mathbf{x}}(t) \, dt = \mathbf{\dot{Q}}^{t} \quad V(t) \cos \left[\mathbf{q}(t)\right] \, dt \\ \mathbf{y}(t) &= \mathbf{\dot{Q}}^{t} \quad V_{\mathbf{y}}(t) \, dt = \mathbf{\dot{Q}}^{t} \quad V(t) \quad \sin \left[\mathbf{q}(t)\right] \, dt \\ \mathbf{q}(t) &= \mathbf{\dot{Q}}^{t} \quad W(t) \, dt \end{aligned}$$

Inverse Kinematics:

Which control **V** and w is needed for desired motion? Options depend on kind of drive.

Drives for Vehicles on a Plane

Configuration space:

Options for control:

- Speeds of the driving wheels
- Directions of the wheels / axes

Limitations by constraints

e.g.

- connections between wheels
- Dependency between direction and speed of wheels

ICC = instantaneous center of curvature

ICC

ICC defined as intersection point of all axes

Constraints for smooth motion:

- ICC exists
- Consistent speed of driving wheels

Images from Borenstein et.al.: Where am I?

Otherwise:

- Robot loses traction
- Robot slides, unpredictable motion

49

ICC can be changed by

ICC infinitely far.)

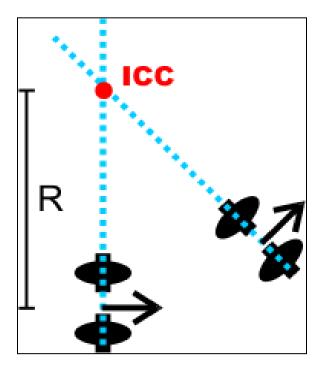
- steering of axes/wheels
- different speeds of driving wheels

Robot moves on a circle around ICC.

(Straight move for parallel axes:

ICC = instantaneous center of curvature

Cognitive Robotics Motion

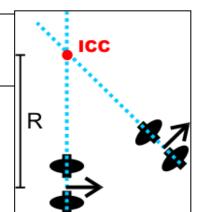


 $\begin{bmatrix} x'\\y'\\\theta' \end{bmatrix} = \begin{bmatrix} \cos(\omega\delta t) & -\sin(\omega\delta t) & 0\\\sin(\omega\delta t) & \cos(\omega\delta t) & 0\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x - ICC_x\\y - ICC_y\\\theta \end{bmatrix} + \begin{bmatrix} ICC_x\\ICC_y\\\omega\delta t \end{bmatrix}$

Pose of Robot after time dt while robot rotates wdt around ICC:

Kinematics by ICC

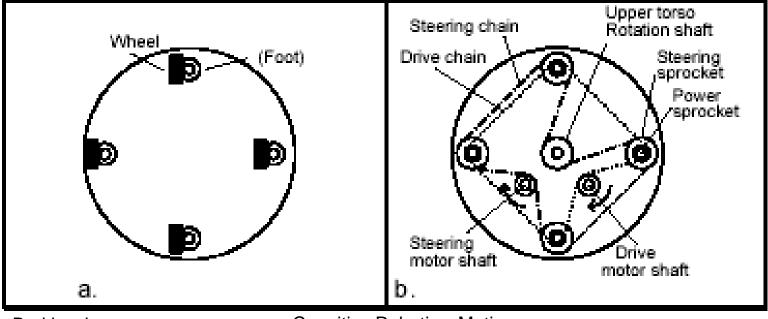
Position of ICC for robot at pose (x,y, q) : $ICC = [x - R\sin(\theta), y + R\cos(\theta)]$



Synchrodrive

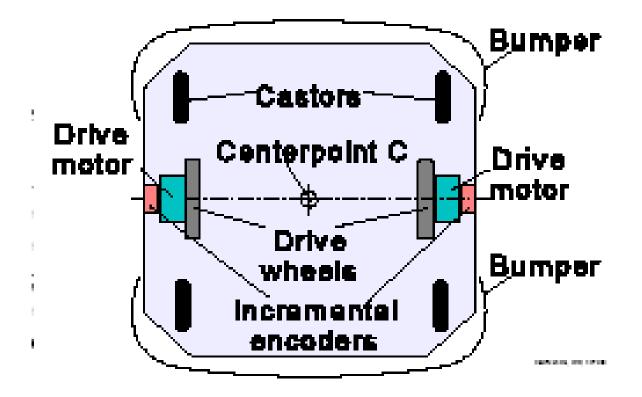
All wheels in same steerable direction w with identical speed. ICC infintely far perpendicular to direction w

> **Control:** Speed v and direction w of wheel(s)



Differential Drive

Driving wheels on 1 axis with different speeds

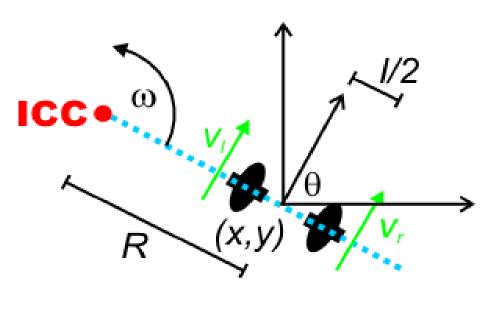


Differential Drive

ICC on the axis, position depends on v_l , v_r

 $v_l = v_r$ moves straight on

 $v_{I} = -v_{r}$ turns around



Control: Speeds v₁ and v_r

> $ω(R + l/2) = v_r$ $ω(R - l/2) = v_l$

$$R = \frac{1}{2} \frac{(v_i + v_r)}{(v_r - v_l)} \qquad \omega = \frac{v_r - v_l}{l}$$

Differential Drive: Kinematics

Change from pose (0,0,0) to (x(t),y(t),q(t))by speeds v_1 and v_r of left and right wheel

$$\begin{aligned} x(t) &= \frac{1}{2} \int_0^t [v_r(t) + v_l(t)] \cos[\theta(t)] dt \\ y(t) &= \frac{1}{2} \int_0^t [v_r(t) + v_l(t)] \sin[\theta(t)] dt \\ \Theta(t) &= \frac{1}{l} \int_0^t [v_r(t) - v_l(t)] dt \end{aligned}$$

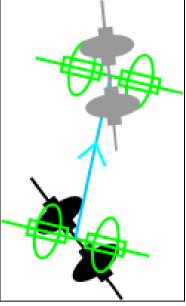
Differential Drive: Inverse Kinematics

Which controls $v_{l}(t), v_{r}(t)$ result indesired motion?

$$\begin{aligned} x(t) &= \frac{1}{2} \int_0^t [v_r(t) + v_l(t)] \cos[\theta(t)] dt \\ y(t) &= \frac{1}{2} \int_0^t [v_r(t) + v_l(t)] \sin[\theta(t)] dt \\ \Theta(t) &= \frac{1}{l} \int_0^t [v_r(t) - v_l(t)] dt \end{aligned}$$

Many different solutions to arrive at a given target.

No motion in direction of the axis (towards ICC).



Differential Drive: Inverse Kinematics

Special cases:

$$\mathbf{v} = \mathbf{v}_{1} = -\mathbf{v}_{r}:$$

$$\begin{pmatrix} \mathbf{x}' \\ \mathbf{y}' \\ \mathbf{\theta}' \end{pmatrix} = \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{\theta} + 2\mathbf{v}\delta t/\mathbf{I} \end{pmatrix}$$

$$\begin{aligned} x(t) &= \frac{1}{2} \int_0^t [v_r(t) + v_l(t)] \cos[\theta(t)] dt \\ y(t) &= \frac{1}{2} \int_0^t [v_r(t) + v_l(t)] \sin[\theta(t)] dt \\ \Theta(t) &= \frac{1}{l} \int_0^t [v_r(t) - v_l(t)] dt \end{aligned}$$

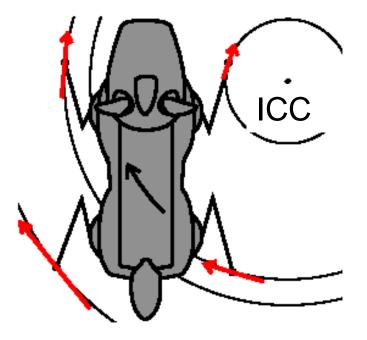
Turn on place

$$v = v_{t} = v_{r}:$$

$$\begin{pmatrix} x' \\ y' \\ \theta' \end{pmatrix} = \begin{pmatrix} x + v \cos(\theta) \delta t \\ y + v \sin(\theta) \delta t \\ \theta \end{pmatrix}$$
Forward motion

AIBO: "Wheel model" (Differential Drive)

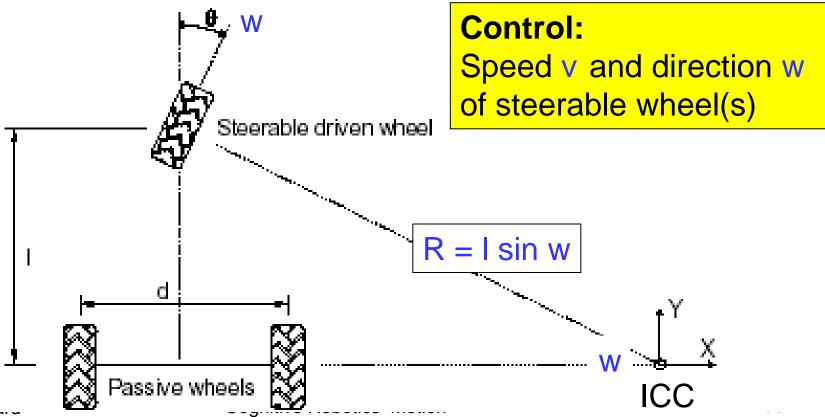
Curved motion by different speeds of legs.



Controlled Wheels

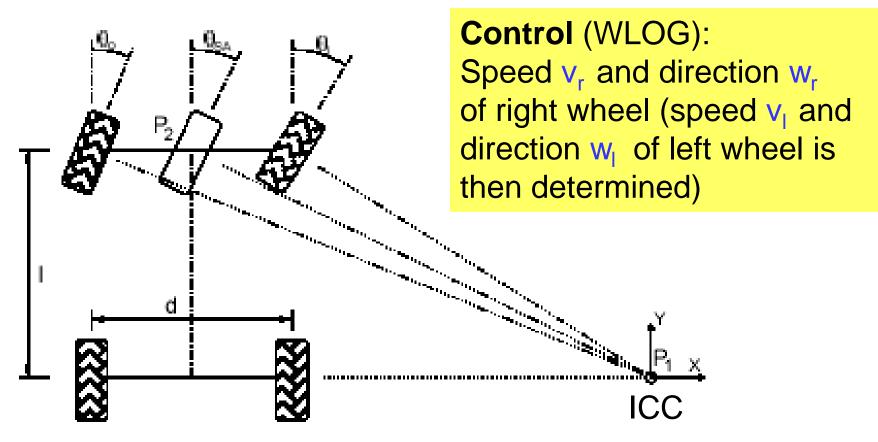
One (or more connected) steerable wheels, other wheels passiv: Bicycle, Tricycle, Wagon etc.

ICC on the axis of passive wheel(s), position depends on w



Ackermann-Drive: Automobile

Front wheels are individually steerable



Modell with ICC like for tricycle by a phantom wheel at P₂

Characteristica of Drives:	
Rotation on place:Differential drive	Mostly 2 control parameters for 3 spatial DOF ØNonholonomic drives

• Tricycle, Ackerman only for $w = 90^{\circ}$ (with stability problems)

Differential drive:

- Uneven terrain and sliding results in direction errors for. Tricycle, Ackerman:
- Complicated maneuvers (parking!)

Ackerman:

- Improved stability by separated (and slanted) front wheels

Degrees of Freedom (DOF) - continued

DOF is in both work space resp. configuration space the

- minimal number of parameters for complete description equivalently:
- maximal number of independent parameters

Work space: *effective DOF*

Configuration space: controlable DOF

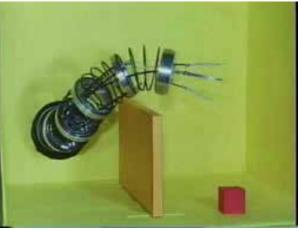
Degrees of Freedom (DOF) - continued

Number of effective DOF

i.g. different from number of controlable DOF.

 All poses in work space may be reachable even in case of effective DOF > controlable DOF (e.g. differential drive)

effective DOF < controlable DOF
 is useful in case of obstacles



Nonholonomic Drive Systems

<u>Nonholonomic</u> Constraints $C(p_1,...,p_n, p_1,...,p_n,t) = 0$ impose dependencies of paramaters *and their derivatives*.

$$V = (V_x, V_y)$$

<u>Holonomic</u> Constraints $C(p_1,...,p_n,t) = 0$ impose dependencies of parameters.

Nonholonomic Constraint:

 $tanq = v_y / v_x$ i.e. $v_x sinq - v_y cosq = 0$ cosq=0 for q=p/2 implies $v_x=0$: No motion in direction of axis (e.g. for differential drive)

Holonomic Drive Systems

Most drive systems are nonholonomic and have only 2 controllable parameters

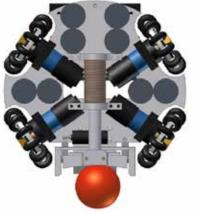
Holonomic drives:

 Omnidirectional drive (Control by separate motors of wheels)

 Synchrodrive for rotationally symmetric vehicles (2 spatial DOF)

Cognitive Robotics Motion

Synchrodrive with additional body rotation



Outline

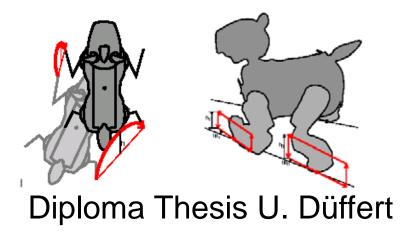
Introduction Kinematics of Poses **Kinematics of Drive Systems Trajectories** Motion Planning Motion Control Motions of Legged Robots **Optimization/Learning of Motions Biologically Inspired Motions**

Trajectories

Trajectory in work space/configuration space:

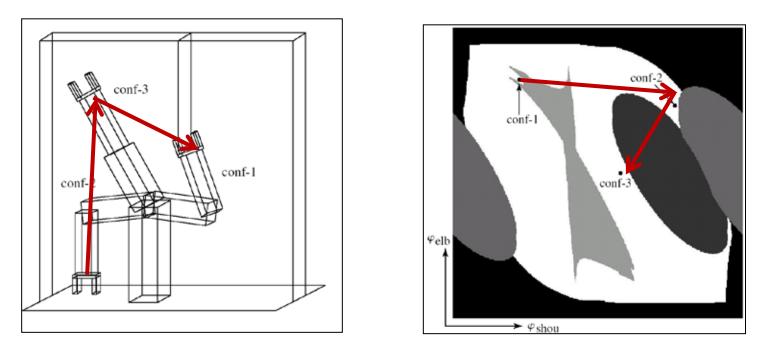
Sequence of spatial parameters (positions/poses of the robot or its parts) or of control parameters at different times, e.g.

- trajectory of CoM (center of mass)
- trajectory of feets
- trajectory of limb angles



Trajectories

Set of poses p(t) and corresponding configurations q(t):



Motion planning: Find realistic (and optimal) trajectories. The trajectories in the figures are not realistic.

Trajectories of Keyframes

Sequence of Keyframes:

Characteristic poses during a motion ("like in a comic"). Originally used in animated movies.

Transition times define speed to reach next pose. Poses between keyframes must be interpolated.

Keyframe

. . .

Time 1000 HeadPitch HeadYaw 0 RShoulderPitch LShoulderPitch 120 RShoulder RollLShoulderRoll 0 **REIbowRoll 90** LElbowRoll -90 **REIbowYaw 90** LElbowYaw -90 RHipYawPitch LHipYawPitch 0 **RHipPitch LHipPitch -31** RHipRoll LHipRoll 0 **RKneePitch LKneePitch 63** RAnklePitch LAnklePitch -31

Complete set of joint angles to be set in given time

Motion Skill: Sequence of Keyframes

300 0 -21 -62 32 -69 -59 0 -{ FILE walk_forward-flemming-nika.txt 300 -5 -21 -62 46 -69 -59 0 (in .../keyframes

300 0 - 21 - 62 60 - 69 - 59 0 8 - 10 - 0 12 - 11 0 8 12 - 0 - 3 - 11 - 110 - 32 69 59

300 0 -21 -75 60 -69 -59 0 8 6 -36 27 -11 0 8 12 -15 7 -11 -97 -32 69 59 300 0 -21 -86 60 -69 -59 0 8 42 -69 13 -11 0 8 12 -30 23 -11 -86 -32 69 59 300 0 -21 -110 60 -69 -59 0 8 12 -0 -9 -11 0 8 -10 -0 12 -14 -62 -32 69 59 300 -5 -21 -110 46 -69 -59 0 0 18 -0 -9 -4 0 0 -10 -0 17 -5 -62 -46 69 59 300 0 -21 -110 32 -69 -59 0 -8 12 -0 -3 11 0 -8 -10 -0 12 11 -62 -60 69 59 300 0 -21 -97 32 -69 -59 0 -8 12 -15 7 11 0 -8 6 -36 27 11 -75 -60 69 59 300 0 -21 -84 32 -69 -59 0 -8 12 -30 23 11 0 -8 42 -69 13 11 -84 -60 69 59

Each line starts with the transition time followed by the target angles of joints in a predefined order.

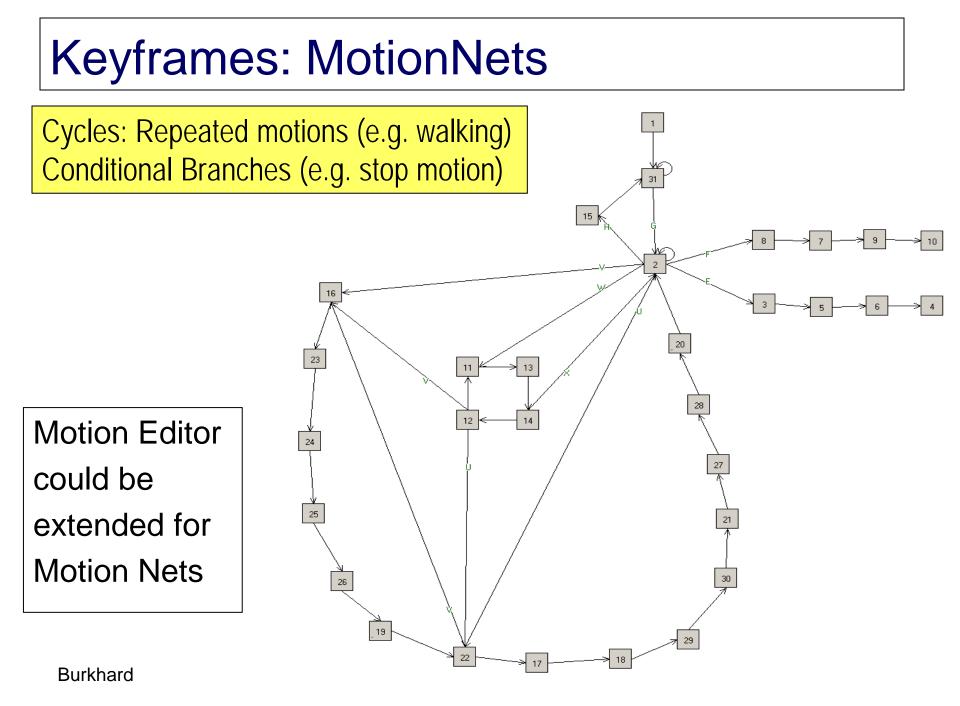
RoboNewbie:

Keyframe sequences are "played" by class keyframeMotion.

Order of Joints in RoboNewbie Keyframes

NeckYaw = 0NeckPitch = 1LeftShoulderPitch =2LeftShoulderYaw = 3LeftArmRoll = 4LeftArmYaw = 5LeftHipYawPitch = 6LeftHipRoll = 7LeftHipPitch = 8LeftKneePitch = 9LeftFootPitch = 10

I eftFootRoll = 11RightHipYawPitch = 12 RightHipRoll = 13RightHipPitch = 14RightKneePitch = 15 RightFootPitch = 16RightFootRoll = 17RightShoulderPitch = 18 RightShoulderYaw = 19 RightArmRoll = 20RightArmYaw = 21



Keyframes

Simple implementation Simple design (especially with "teaching") But motions can not adapt

Best suited for short sequences (stand-up, kick)

Usage of Trajectories for Motion Planning

Find a trajectory (path) of the robot or a part of the robot in work space or configuration space which satisfies certain conditions, e.g.

- Motion from start to destination while avoiding obstacles
- Motion of a limb while maintaining stability
- Motion of a manipulator to grasp an object

Side conditions may be

time, energy, smoothness, stability, safety...

Appropriate trajectories can be found e.g. by physical models or by Machine Learning

Usage of Trajectories for Motion Control

Control the actuators (joint, limbs,...) such that the robot or a part of the robot follows a given trajectory.

Inverse kinematics

can be used to find the appropriate control parameters.

Shift CoM following a (straight) trajectory implies trajectories of feet, e.g. semi-ellipses or parallelograms. Related joint controls by inverse kinematics.

Outline

Introduction Kinematics of Poses **Kinematics of Drive Systems** Trajectories Motion Planning Motion Control Motions of Legged Robots **Optimization/Learning of Motions Biologically Inspired Motions**

Planning

... is a broad field in AI with many different methods.

Planning can be used for motions and for more complex behaviors (different time horizons).

Here: Some useful methods for motion planning

Later: Behavior planning

Motion Planning vs. Control

Robot can

- plan motions (and more complex behavior) before execution
- execution is then performed by appropriate control

Robot Control can be performed as

("blind" control)

- Preplanned motions performed without sensor feedback.
- Closed loop control:

• Open loop control:

Sensor feedback is used for adaptation of intended motions.

Some planning methods lead directly to controls (e.g. potential fields).

Alternative for Planning:

Online motion control

by immediate reactions to sensor measurements

(e.g. for maintaining balance)

- sensor actor coupling
- behavioral robotics
- emergence principle

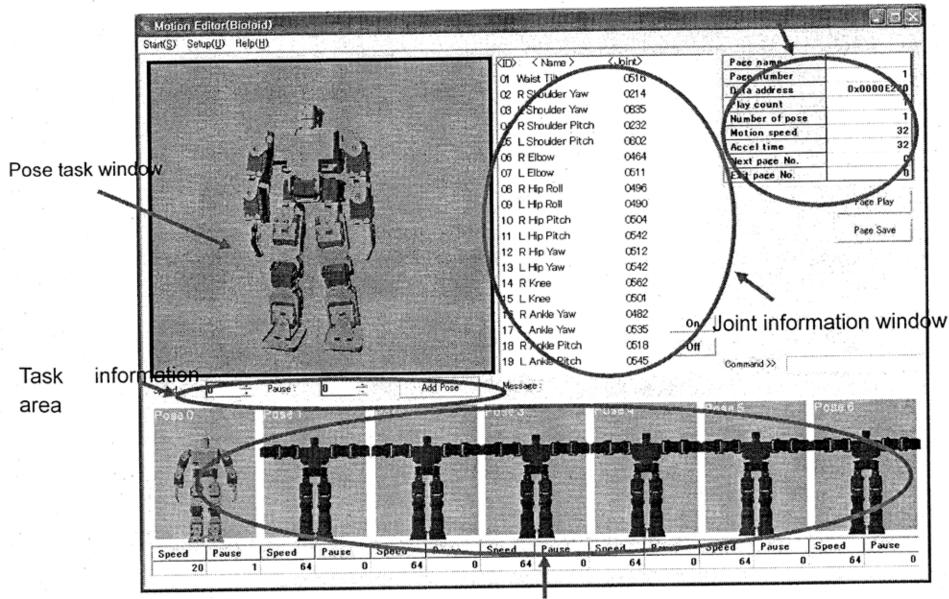
Teaching

- Set "characteristic poses" of a motion by hand (at real robot) or by motion editor
- Protocol joint angles of each such pose as *keyframe* resulting in a sequence of keyframes
- Optimize (transition times, smoothing, ...)

e.g. by machine learning

Motion Editor from Bioloid Manual (2006)

Page information



Saved pose window

Motion-Capturing

Imitate demonstrated motions

From IROS 2007

Markers at important points

Record motions (3D Motion Tracker)

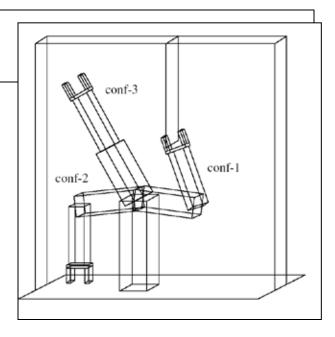
Implement related control (e.g. by analyzing the motion)

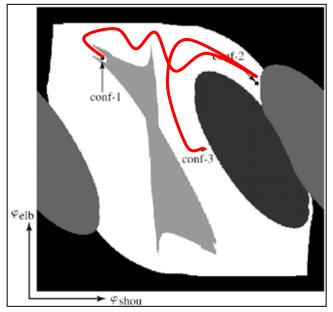
Motion Planning

Optimality of a trajectory may concern

- Length of path
- Time
- Smoothness
- Stability
- Safety
- Energy consumption
- Esthetics

Planning can be performed in work space or configuration space using path planning algorithms (e.g. A*)





Burkhard

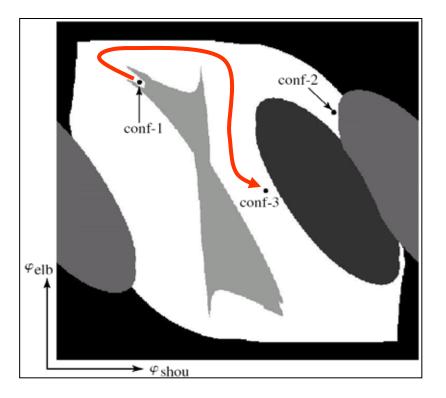
Cognitive Robotic Russell/Norvig: Artificial Intelligence

Images

Planning in Configuration Space

Special regions in the configuration space for

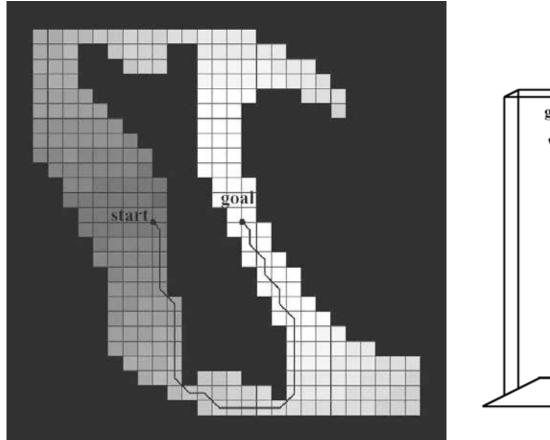
- obstacles in work space (gray),
- geometry of the robot (black)

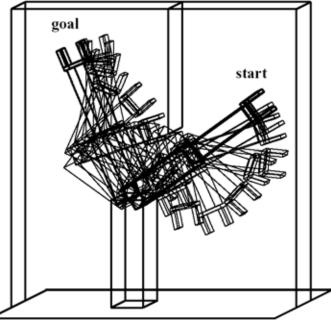


Results of planning in configuration space can be directly used as control for motion in work space.

Grid Based Search in Configuration Space

e.g. using graph search methods like A*

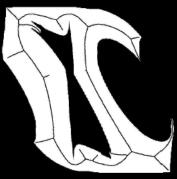




Skeleton Based Search in Configuration Space

Skeleton: Connects certain points. Search for path on skeleton.

 as Voronoi-Graph: points with equal minimal distances to obstacles



• as Visibility Graph:

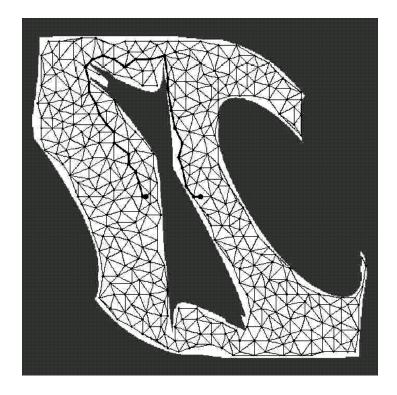
Nodes at corners of obstacles Arcs between mutually observable nodes

Problems:

- complex algorithms
- results often in detours

Random Point Search in Configuration Space

Graph search through random points in free space. Ranking of preferable areas by differently distributed points.

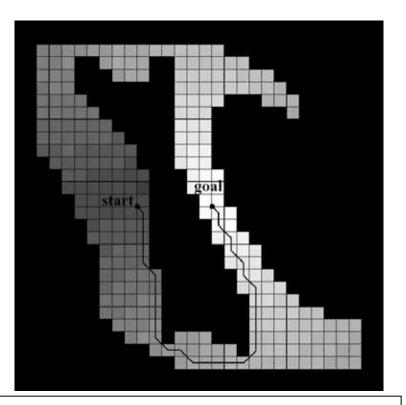


Potential Field in Configuration Space

"Potentials at the field":

- Target attracts
- Obstacles repel

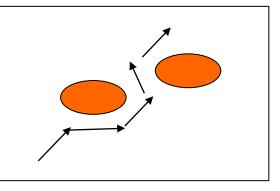
Can be combined with other search methods.



Can be used as control:

Robot follows attractions in the potential field.

Control in a point (x_0, y_0) as direction vector $[F_x(x_0, y_0), F_y(x_0, y_0)]$ of vector field $F(x, y) = [F_x(x, y), F_y(x, y)]$



Special case: Vector field F(x, y) is gradient of a potential field U(x, y)F(x, y) = [dU(x, y) / dx, dU(x, y) / dy]

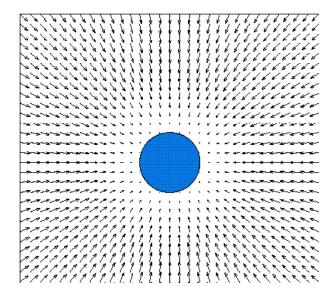
For application:

- Potential determined by environment/from sensory information
- Motion follows the gradient

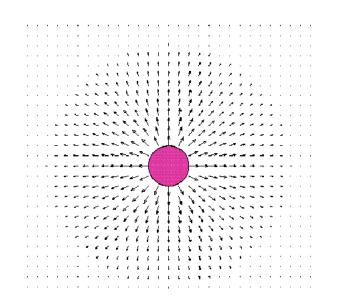
Burkhard

Cognitive Robotics Motion

target: attracting field



obstacles: repelling fields

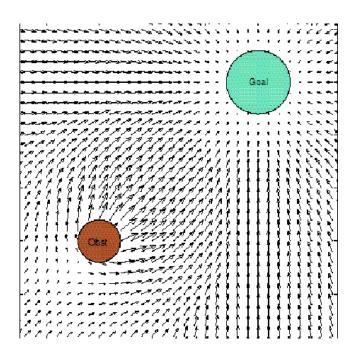


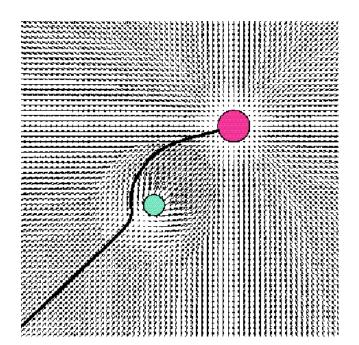
e.g. $U_{goal}(p) = a \operatorname{dist}(p, goal)^2$



Potential field by superposition (addition):

 $U(p) = U_{goal}(p) + S U_{obstacle}(p)$ F = - [dU / dx, dU / dy]



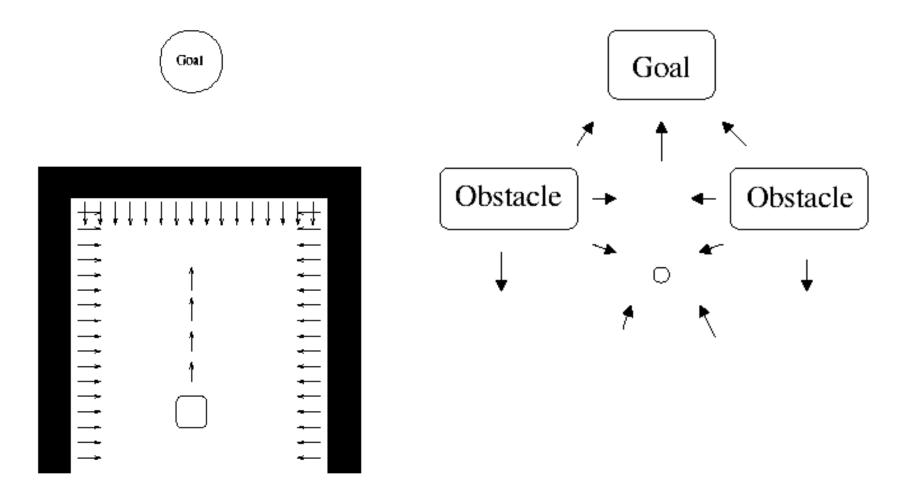


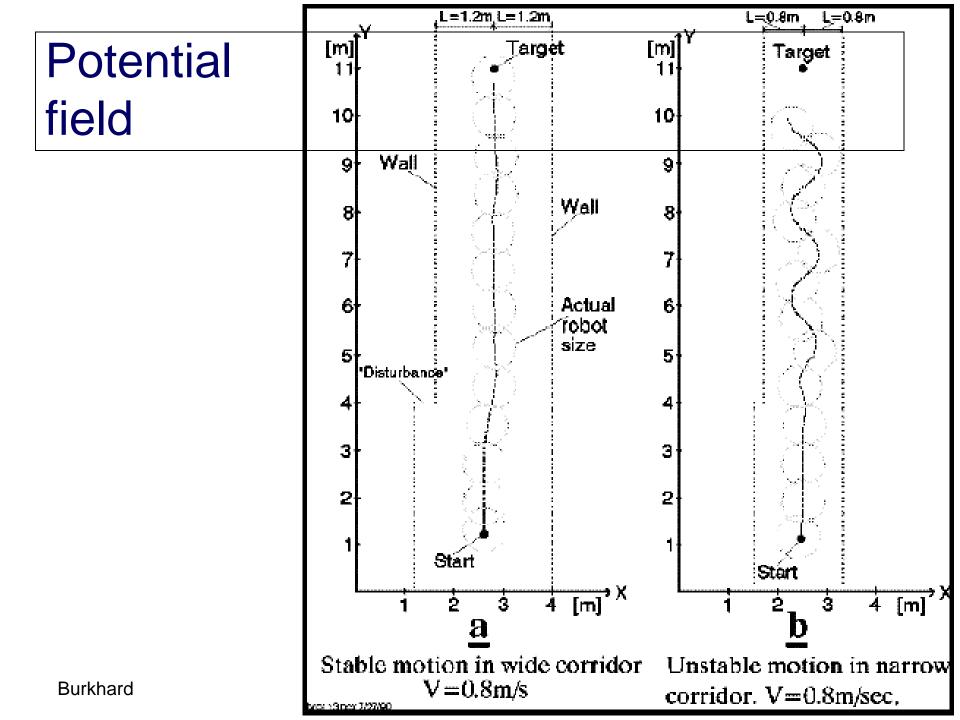
Benefits:

- direct usage for control
- local evaluation

Problems:

- local minima
 - Compensation of fields,
 - "Trap" by close obstacles
- oscillating movements for
 - narrow areas
 - high speed





Additional other fields, e.g.

- rotating fields
- random fields

can

- specify directions
- break symmetries
- avoid (some) local minima

