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Motion

Motion:
Change of position(s) by certain actions/skills,
e.g. for locomotion or manipulation.

Great variety of natural and technical systems

Formal description by mechanics
(force, mass, displacement, velocity, acceleration)

Problems in Robotics:
How can motions be realized and controlled
(hardware, software)
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Burkhard

“MadelnGermany”
Autonomos Labs (R.Rojas, FU Berlin)
https://www.youtube.com/watch?v=nX-le6JSU5g

How many degrees of freedom?
Which poses can be reached?
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Humanoid Robots

Nao (Aldebaran)

Myon

(Dr. Manfred Hild,
Neurorobotics Lab
Humboldt University)

How many degrees of freedom?
Which poses can be reached?
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Flying Robots

Cognitive Robotics Lab
Prof. Verena Hafner, HU
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Manipulators

Karlsruhe

Burkhard

Aachen
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‘Manipulators

_ ErEw — Feeding Robot
Surgical Robot DaVinci Bestic AB (Stockholm)
Photo Nader Moussa Photo: Alice Oberg
(WikiMedia) (Sweden.se)
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Manipulators

Strawberry Harvesting Robot
by Robotic Harvesting LLC

Photo: NASA
(WikiMedia)
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Joints

 Active: control with motors, pulleys, ...
. Problem: loading of gear axes
e Passive: Adaptation

Maintaining rest position by drives, gravity, friction, preload,...
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Joints of Nao from Aldebaran

HeadPitch

RShoulderRoll
RShoulderPitch

REIbowRoll L e

howYaw " _ .  LshoulderPitch

LShoulderRoll

T =
l -_ ‘!’ LEIbowY aw

. LEbowRoll
RHipYawPitch

] RHipPitch ‘ ?
21 active DOF (motors) . .. ﬂ- P

LHipYawPitch

P - LHipRoll

2

° 2 head o =" LHipPitch
RKneePitch
* 4 per arm L LKneePitch
° 5 per Ieg RAnklePitch
e 1hi
p RAnkleRall LAnklePitch
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Nao In
Simulation

22 active DOF (motors):

e 2head

Yaw'%
. Y

Pitch
(O

7
Y
Roll V%
AP
Z

YawPitch

Y’L

e 4 perarm

« 5 perleg
e 2Nhip

Burkhard

he2

NeckPitch
rael
lael
RightShoulderPitch LefiShoulderPitch
RightShoulderYaw lae?
95..1 A LeftShoulderYaw
} -1.95
£ rae3 legﬂ’;;l] ae3
¥ RightArm Roll e “ Left Arm Roll
-120..120 120..120
aed laed
Right Arm Yaw Left Arm Yaw
-1..90 -90..1
X
rlel y lle1
RightHipYawPitch LeftHipYawPitch
0.1 -90...1
rla2 -.Ile2
RightHipRoll LeftHipRoll
45..25 5. a5
rle3 ( () lle3
RightHipPitch LeftHipPitch
-25..100 -25..100
rled lled
RightKneePitch {EO ' LeftkneePitch
-130..1 -130..1
rle5 lle5
RightFootPitch LeftFootPitch
-45...75 _45..75
rleb lle6
RightFootRoll LeftFootRoll
45,25
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1 DOF Joints in Technique

With 1 degree of freedom (DOF):

— rotation joint —d(‘
— torsion joint —[ﬂ—@ [ O

— revolver joint
— Linear joint (Translation joint., prismatic joint)

+“—>

Several DOF by combinations

lael
LeftShoulderPitch

-120...120
‘ lae2
LeftShoulderYaw
y -1..95
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Puma (Programmable Universal Manipulation Arm)

6 rotation joints (6 DOF)
Which poses can be reached?
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Degrees of Freedom (DOF)

DOF is the

e minimal number m of parameters p,...,p,, for complete
description

equivalently:
 maximal number m of independent parameters py,...,pn,

Burkhard Cognitive Robotics Motion
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Degrees of Freedom (DOF)

DOF of poses

(= parameters for complete description in work space):

e point on plan p=(x,y) , 2 DOF (2 position)

e car on plane: p=(x,y,q), 3 DOF (2 position, 1 orientation)
e airplane: p=(x,y,z, f,Y, q), 6 DOF (3 position, 3 orientation)

DOF of control parameters (in control/configuration space):
Independently movable parts (joints, wheels/axes, ...)

DOF of control may be active (actuated) or passiv
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Degrees of Freedom (DOF)

Reachable poses depend
on morphology and environment

Constraints C(p4,...p,) =0
for parameters
may reduce DOF

DOF=1

o

Burkhard Cognitive Robotics Motion
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Kinematics of Poses

Kinematics (forward kinematics):

 What is the pose?
Inverse kinematics (reverse kinematics):

 How to set the pose?

Simplification in Kinematics:
Neglect mass and force

Burkhard Cognitive Robotics Motion
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Work Space and Configuration Space

Work space: ,Relevant” environment of the robot or some part.
Pose p=(p4,..-,Pm) :

Position/orientation of the robot or some part in work space
(e.g. the pose of an end effector, of a camera etc.).

m = DOF of the pose in Workspace

End effector of an |
Industrial robot:

p=(x,y,z, .Y, q)

6 DOF:
@ 3 position,
@ 3 orientation

Burkhard Cognitive Robotics Motion
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Work Space and Configuration Space

Configuration space:
Configuration g=(q4,...,4,) : parameters of joints etc.
,2generalized coordinates*, ,control parameters”

n = DOF In configuration space

.o,0s)

Burkhard 21




Work Space and Configuration Space

q=(dy,---,0s)

ﬁ
0 H Inverse Kinematics
A

d Kinematics H
Ty
&% (x.y,z, £,Y, Q)

Burkhard Cognitive Robotics Motion

22




Work Space and Configuration Space

Work Space

Configuration Space

cont-1

From Russell/Norvig:
Artificial Intelligence

Burkhard Cognitive
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Work Space and Configuration Space

Kinematics: p = f(a)
Determine pose from configuration
— Configuration determines pose uniquely

Inverse Kinematics: g = f(p) .
Find a configuration for requested pose g

— Pose might be realized %’ﬁﬁ' | |
by different configurations il g ¥

T~
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Example ,Planar Leg”

Work space X,y

AY
Configuration space q4, d,

X A Q,

l(ql, qZ)
foot
(X.y) d4

=
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Example ,Planar Leg”

Kinematics: AY
—Rotation by Q,

—Translation by I,

—Rotation by Q,

—Translation by |,

x] _, ﬂﬂs{ﬂ.}} i cos(8; + &)
v| — ' | sin(@;) * | sin(g, + 6)
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Example ,Planar Leg" AY

Inverse Kinematics:
(by cosine rule)
Iz 7 _’Ir':l' e .li||E —.I".rE

cos(f;) = T -
142

cos (Q,) computable by the

formula for forward kinematics

2 possible solutions:
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Kinematics: Calculate p = f(q)

Joints: Rotations

Limbs: Translations

Burkhard Cognitive Robotics Motion
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Kinematics: Coordinate Transformation

Burkhard

From local coordinates
to world coordinates

Cognitive Robotics Motion
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Kinematics: Coordinate Transformation

Coordinate transformation by a sequence of
Intrinsic rotations and translations
along the cinematic chain.

The ordering must be preserved.

Burkhard Cognitive Robotics Motion
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Homogenous Coordinates for 3D

4-dimensional vector
( x/w, y/w, z/w, w ) with arbitrary w 10 represents (X,y,z)

We will use (x,y,z,1)

l.e. w=1

The 4-dimensional matrix H

can describe Rotation R
followed by Translation T

H

R N < X

R

0

X

y
Z

Burkhard

Cognitive Robotics Motion
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Homogenous Coordinates for 3D

Seqguence of transformations along cinematic chain
can be described by matrix multiplications || « = M 1 x

M= HxHHg...H

X
Y:I\/Ixy
/
1

— Kinematics
by computing X from X = M xx for given M, X

— Inverse Kinematics
by finding M=H xHH...H_ for given X, X
(but usually by other calculations resp. approximations)
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Example: [x

Kinematics AIBO .
I
Diploma thesis
Uwe Duffert
7 cos(A3)I2
12
al |'_><| - [ | ) 4

World coordinates in the shoulder.
What are the coordinates (X,y,z) of the left forefoot?

Calculation:

by transformation of the foot coordinates to shoulder coordinates

Burkhard Cognitive Robotics Motion 33




Example:
Kinematics AIBO ¥ |
I
Diploma thesis
Uwe Duffert - cos(63)12
|2
al I'_Kl - bl ! ) 2]

Transformation of the foot coordinates to shoulder coordinates:
Translation lower leg: shift towards negative z axis (I, ).
Rotation knee: rotate clockwise around y-axis (d; ).
Translation upper leg: shift towards negative z axis (I, ).
Rotation shoulder 2: rotate counter-clockw. around x-axis (q,).
Rotation shoulder 1: rotate clockwise around y-axis (g ).

GhrhwWhE

Rot(-q,) Rot(q,) Trans(l, )Rot(-q3) Trans(l,)

Burkhard Cognitive Robotics Motion 34




Example: Kinematics AIBO

Rot(-q,) Rot(qg,) Trans(l,) Rot(-g5) Trans(l,)

T
0
g :H.(){;y(—ﬁl)—H.()tz(ﬂg)-'i"i'-m% 0 -Rot, (—03) - Trans )
1 —h
cos(f#,) 0 —sin(f;) O 1
B 0 1 0 0 0 cos( Hg — sin( ﬂg) '[]
sin(f;) 0 cos(f1) O 0 5111(6'2) cos( 6'2)
0 0 0 1 0
1 00 O cos(f3) 0O —5111(6'3) 0 1 00 O
01 0 O 0 1 0 0 01 0 O
00 1 - sin(f3) 0 cos(f3) O 0 01 -
00 0 1 0 0 0 1 000 1

l2 cos(61) sin(03) + l2 sin(6#1) cos(#2) cos(f3) + 11 sin(6; ) cos(62)
[, sin(65) + I3 sin(f,) cos(63)
l5 sin(#; ) sin(f3) — 5 cos(#,) cos(B;) cos(f3) — I; cos(#) cos(bs)
1

— O O O

= o O O




Calculate q,, g, ,q; for feet position (x,y,z)

Example: (
Inverse
Kinematics AIBO T '
d; (between 11,12)
by Cosine rule. , cos(63)12
|2
Preferably bending
forward: |
. X _ y
Positive solution. gk b] g
I::E F R 2 2
cos (m—0;y) = 1+l — (@ +y +27)
211l
F EE R - 2 2
f#; = m + arccos 16— (@ +y +27)
2115
2 2 2 12 12
— T arccos (" +y +2°) -l —
2111



Example: Inverse Kinematics AIBO

q, by definition of Sine,

where | q, |<=p/2 by
anatomy

I

cos(83)I2

y = sin(fa) - (1 + la - cos(f3))

: Y
0, = a
9 = arcsin (31 s EDS(HS))

Burkhard Cognitive Robotics Motion 37



Example: Inverse Kinematics AIBO

a = lysin(fs) p Schultergelenk (0,0,0)
h = (31 + 1 t:::::s(fr'g)) cos(6)

d = Va2 +b

3 = arctan(b, a)

a = dcos([3) -

b = dsin(f) !

Wunschfuposition (x,y,2)

Burkhard Cognitive Robotics Motion 38



Example: Inverse Kinematics AIBO

T = ly cos(fy) sin(f3) + [, sin(#,) cos(fy) cos(#3) + 1 sin(6f, ) cos(6s)
= acos(f;) + bsin(6;)
= d cos(#;) cos(3) + dsin(6#,) sin(j3)
= dcos(6, + 3)

z = dsin(f; + )

6, + 3 = arctan(z, )

6, = arctan(z,x) — 3

Burkhard Cognitive Robotics Motion 39



Example:
Inverse
Kinematics AIBO

Calculate q4, 0, ,05

for feet position (x,y,z)

72 2 4,2 ]2 _ ]2
0y = arccms( Ty ! 2)

214115

| y
i —
2 Aresttl (31 ny cos{93)>

arctan(z, x) — arctan ((.!1 + Is CDS(Hg)) cos(62), Lo sill(é'g))

S
3
1
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Special Benefits in Calculations

Rotations in a plane (around joint axis)

Select "simple" solutions

Select "simple" relationships

Use arctan (better: atan2) instead of arcsin or arccos
( because of large error propagation near -1/+1)

/

Burkhard

arcsin

Cognitive Robotics Motion
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Kinematics of Drive Systems

Kinematics (forward kinematics):
 Where does it move to?

Inverse kinematics (reverse kinematics):
« How can it get there?

Simplification:
Neglect mass and force

Burkhard Cognitive Robotics Motion
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Kinematics of Drive Systems

 Driven wheels or chains
* Further wheels as stabilizers or for odometry
 Controlable wheels

ldealizing assumptions:

 Wheels run straight (perpendicular to the axis)
 Forward movement per complete rotation: 2pr for radius r
 Forward movement per rotation about w: wr for radius r

Burkhard Cognitive Robotics Motion 44



Drives for Vehicles on a Plane

Work space:

Pose (x,y, ) with 3 DOF

V(1) = (V, (1), V(1)) and W(t) are control parameters for motion.
They depend on position and speeds of driving wheels.

Burkhard

g =0 In x-direction

Cognitive Robotics Motion
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Kinematics/Inverse Kinematics

Kinematics: Calculate motion from control.

Change from pose (0,0,0) to (x(t),y(t),q(t))
by speed V(t)= (V, (1), V,(t)) in direction w(t)

X(t) = 0, V,(®) dt = 0, V(t) cos [q()] dt
y(t) = 0, V,(t) dt = 0,V(t) sin [q(t)] dt
qem =0, w( dt

Inverse Kinematics:
Which control V and w is needed for desired motion?

Options depend on kind of drive.
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Drives for Vehicles on a Plane

Configuration space:

Options for control:
e Speeds of the driving wheels
* Directions of the wheels / axes

Limitations by constraints

e.g.
e connections between wheels
 Dependency between direction and speed of wheels

Burkhard Cognitive Robotics Motion 47




|CC = Instantaneous center of curvature

ICC defined as intersection point of all axes

<
% *u
ICC %

Constraints for smooth motion: o
e |CC exists i#
e Consistent speed of driving wheels Images from

Borenstein et.al.:

Where am |?

Otherwise:
 Robot loses traction
« Robot slides, unpredictable motion

Burkhard Cognitive Robotics Motion 48



|CC = Instantaneous center of curvature

Robot moves on a circle around ICC.

(Straight move for parallel axes:
|ICC infinitely far.)

ICC can be changed by
e steering of axes/wheels
 different speeds of driving wheels

Burkhard Cognitive Robotics Motion 49




Kinematics by ICC | alec

Position of ICC for robot at pose (x,y, q) : |R 27
-

e
ICC = [z — Rsin(8), y + Rcos(8)] &

Pose of Robot after time dt
while robot rotates wdt around ICC:

[ 2 ] - cos(wdt) —sin(wdt) 0] [ z—ICC, | [ ICC, |
y | = | sin(wdt) cos(wot) 0 y—I1CC, | + | ICC,
e ] 0 0 1| | v | | wot |
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Synchrodrive

All wheels in same steerable direction w with identical speed.
|ICC infintely far perpendicular to direction w

Control:
Speed v and direction w
of wheel(s)

N Upper torsao
Steenng chan Ratation shaf

Dve chain Steenng

Sprocket
Power

Steering
motar shaft

a. b
Burkhard Cognitive Robotics Motion 51
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Differential Drive

Driving wheels on 1 axis with different speeds

Burnper

| ?l:—fc:mturu\—r
Drive Ennlgp:ulnt c. |b ive
dF e — | ITonGr

Dirive
whesls

() e |
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Differential Drive

ICC on the axis, position depends on v, ,V,
V,= V, moves straight on
V,= -V, turns around

Control:
Speeds v, and v,

M

/2
mc-% ~ o(R+1/2) =v,

& /o o(R-1/2) = v,
Nwﬂ ’

_ | (v, +v,) _

R_Z(vr-vJ @

Burkhard Cognitive Robotics Motion




Differential Drive: Kinematics

Change from pose (0,0,0) to (x(t),y(t),q(t))
by speeds v, and v, of left and right wheel

=5 [ t) + v(t)|cos|O(t)]|dt

o(t) = 7 [ on(t) — u(t))at

y(t) = %f; (v (t) + vi(t)]sin|0(t)]dt

Burkhard Cognitive Robotics Motion
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Differential Drive: Inverse Kinematics

Which controls v((t),v.(t) result indesired motion?

z(t) — % | [ [o,(£) + vi(¢)]cos[0(2)]dt

u(t) = 5 [ [o(8) + w(®)]sinfo(1)]at

o) = 7 [Tn(t) — wm(n)))at

Many different solutions to arrive at a given target.

No motion in direction of the axis (towards ICC). \§!

Burkhard Cognitive Robotics Motion
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Differential Drive: Inverse Kinematics

z(t) = % | [ﬂ [on(£) + vi(£)]cos[0(¢)]dt

. y(t) = % /Dt[t.l.r{t} + v (t)]sin[6(t)]dt
Special cases: ‘

1 gt
V=V =V, o) = 7 /D [ (£) — vi(2)])dt
X' X
y'| = y Turn on place
0' 0 + 2vot/l

V=V, =V, :

X' X + v cos(0)ot :
( y.) _ (y + v sin(0)5t ) Forward motion

o' 0

Burkhard Cognitive Robotics Motion
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AIBO: ,Wheel model“ (Differential Drive)

Curved motion by different speeds of legs.

ICC

‘u..‘___...ul"
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Controlled Wheels

One (or more connected) steerable wheels, other wheels passiv:
Bicycle, Tricycle, Wagon etc.
ICC on the axis of passive wheel(s), position depends on w

&, w Control:
Wi Speed v and direction w

. of steerable wheel(s)
1 _Eteeral:ule drivan whesal

et
M-

| i TR=1Isinw

d| -

—wa N P e —_——grrrmrr = f rmm — et — = sei— - — -



Ackermann-Drive: Automobile

Front wheels are individually steerable

L iy Control (WLOG):

T A N Speed v, and direction w,
o |1j\§ .y of right wheel (speed v, and
= directi f left wheel i
T BY—F- irection w, of left wheel is
b S A then determined)
i T, ""-..-- lllllll _ I""-.___I
! IIIII _ --"'-..II '._.
I e T S
i e T
d | R
[ E - e ¥
~ i, Jp
A n: i ti ................................................................ D K
~: e ICC

Modell with ICC like for tricycle by a phantom wheel at P,
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Characteristica of Drives:

Mostly 2 control parameters
for 3 spatial DOF
@Nonholonomic drives

Rotation on place:
 Differential drive
e Tricycle, Ackerman only for w = 90° (with stability problems)

Differential drive:

- Uneven terrain and sliding results in direction errors for.
Tricycle, Ackerman:

- Complicated maneuvers (parking!)

Ackerman:

- Improved stability by separated (and slanted) front wheels
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Degrees of Freedom (DOF) - continued

DOF is in both work space resp. configuration space the
 minimal number of parameters for complete description

equivalently:
 maximal number of independent parameters

Work space: effective DOF

Configuration space: controlable DOF
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Degrees of Freedom (DOF) - continued

Number of effective DOF
l.g. different from number of controlable DOF.

» All poses in work space may be reachable even in case of
effective DOF > controlable DOF
(e.g. differential drive)

o effective DOF < controlable DOF
IS useful in case of obstacles
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Nonholonomic Drive Systems

Nonholonomic Constraints C(py,...Py, Pis---Ppt) = 0
Impose dependencies of paramaters and their derivatives.

Holonomic Constraints
0 V =(vv) C( Py Pt) =0

X217y Impose dependencies
of parameters.

sl

Nonholonomic Constraint:

tang=v,/v, le. v,sing-v,cosqg=0

cosg=0 for g=p/2 implies v,=0:

No motion in direction of axis (e.g. for differential drive)
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Holonomic Drive Systems

Most drive systems are nonholonomi )
y onhoIonomIc Fufighters

and have only 2 controllable parameters FU Berlin

Holonomic drives:
e Omnidirectional drive
(Control by separate motors of wheels’

e Synchrodrive for rotationally symmetric vehicles

(2 spatial DOF)
e Synchrodrive with additional body rotation

Burkhard Cognitive Robotics Motion 64
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Trajectories

Trajectory in work space/configuration space:

Sequence of spatial parameters (positions/poses of the
robot or its parts) or of control parameters at different times,
e.g.

» trajectory of CoM (center of mass)

e trajectory of feets

e trajectory of limb angles

Diploma Thesis U. Duffert

Burkhard Cognitive Robotics Motion 66




Trajectories

Set of poses p(t) and corresponding configurations q(t):

Motion planning: Find realistic (and optimal) trajectories.
The trajectories in the figures are not realistic.
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Trajectories of Keyframes

Sequence of Keyframes:
Characteristic poses during a motion (“like in a comic”).
Originally used in animated movies.

Transition times define speed to reach next pose.
Poses between keyframes must be interpolated.

Burkhard Cognitive Robotics Motion
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Keyframe

Time 1000

HeadPitch HeadYaw O
RShoulderPitch LShoulderPitch 120
RShoulder RollLShoulderRoll 0
REIbowRoll 90

LEIbowRoll -90

RElIbowYaw 90

LEIbowYaw -90

RHipYawPitch LHipYawPitch 0O
RHipPitch LHipPitch -31
RHipRoll LHipRoll 0
RKneePitch LKneePitch 63
RAnNklePitch LAnklePitch -31

Complete set of joint angles
to be set in given time

69




Motion Skill: Sequence of Keyframes

300 0 -21 -62 32 -69 -59 0 -{ FILE walk_forward-flemming-nika.txt
300 -5 -21 -62 46 -69 -59 0 (IN .../keyframes

3000-21-6260-69-5908-10-012-110812-0-3-11-110-32 69 59
3000-21-7560-69-59086-3627-110812-157-11-97 -32 69 59
3000-21-8660-69-590842-6913-110812-30 23 -11 -86 -32 69 59
3000-21-11060-69-590812-0-9-1108-10-0 12 -14 -62 -32 69 59
300-5-21-11046-69-590018-0-9-400-10-017 -5-62 -46 69 59
3000-21-11032-69-590-812-0-3110-8-10-012 11 -62 -60 69 59
3000-21-9732-69-590-812-157110-86-3627 11 -75-60 69 59
3000-21-8432-69-590-812-3023110-842-69 13 11 -84 -60 69 59

Each line starts with the transition time followed by the target
angles of joints in a predefined order.

RoboNewbie:

Keyframe sequences are “played” by class keyframeMotion.

Burkhard Cognitive Robotics Motion 7U



Order of Joints in RoboNewbie Keyframes

NeckYaw =0
NeckPitch =1
LeftShoulderPitch =2
LeftShoulderYaw = 3
LeftArmRoll = 4
LeftArmYaw =5
LeftHipYawPitch = 6
LeftHipRoll = 7
LeftHipPitch = 8

L eftKneePitch =9
LeftFootPitch = 10

LeftFootRoll = 11
RightHipYawPitch = 12
RightHipRoll = 13
RightHipPitch = 14
RightKneePitch = 15
RightFootPitch = 16
RightFootRoll = 17
RightShoulderPitch = 18
RightShoulderYaw = 19
RightArmRoll = 20
RightArmYaw = 21
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Keyframes: MotionNets

Cycles: Repeated motions (e.g. walking)
Conditional Branches (e.g. stop motion)

_
Motion Editor
could be
extended for
Motion Nets

Burkhard




Keyframes

Simple implementation
Simple design (especially with “teaching”)
But motions can not adapt

Best suited for short sequences (stand-up, kick)

Burkhard Cognitive Robotics Motion




Usage of Trajectories for Motion Planning

Find a trajectory (path) of the robot or a part of the robot
In work space or configuration space
which satisfies certain conditions, e.g.

* Motion from start to destination while avoiding obstacles
* Motion of a limb while maintaining stability
* Motion of a manipulator to grasp an object

Side conditions may be
time, energy, smoothness, stability, safety...

Appropriate trajectories can be found e.g.

by physical models or by Machine Learning
Burkhard Cognitive Robotics Motion 74




Usage of Trajectories for Motion Control

Control the actuators (joint, limbs,...) such that
the robot or a part of the robot follows a given trajectory.

Inverse kinematics
can be used to find the appropriate control parameters.

Shift CoM following a (straight) trajectory -
Implies trajectories of feet, e.qg. semi- elllpses or parallelograms
Related joint controls by inverse kinematics.
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Planning

... Is a broad field in Al with many different methods.

Planning can be used for motions and for more complex
behaviors (different time horizons).

Here: Some useful methods for motion planning

Later: Behavior planning

Burkhard Cognitive Robotics Motion
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Motion Planning vs. Control

Robot can
e plan motions (and more complex behavior) before execution
e execution is then performed by appropriate control

Robot Control can be performed as _
« Open loop control: (“blind” control)
Preplanned motions performed without sensor feedback.

e Closed loop control.
Sensor feedback is used for adaptation of intended motions.

Some planning methods lead directly to controls
(e.g. potential fields).
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Motion Planning vs. Control

Alternative for Planning:

Online motion control
by immediate reactions to sensor measurements
(e.g. for maintaining balance)

e sensor actor coupling
 behavioral robotics @ later more
* emergence principle

Burkhard Cognitive Robotics Motion
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Teaching

 Set ,characteristic poses” of a motion
by hand (at real robot) or by motion editor
 Protocol joint angles of each such pose as keyframe
resulting in a sequence of keyframes
e Optimize (transition times, smoothing, ...)
e.g. by machine learning
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Motion Editor from Bioloid Manual (2006)

Page information
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Motion-Capturing

Imitate demonstrated motions

From IROS 2007

Markers at important points

Record motions (3D Motion Tracker)
Implement related control (e.g. by analyzing the motion)
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Motion Planning

Optimality of a trajectory may concern
— Length of path \ QQQQQ

— Time " =
— Smoothness ﬁ;
— Stability

— Safety
— Energy consumption
— Esthetics

Planning can be performed
In work space or configuration space |
using path planning algorithms (e.g. A*) |

Images
Burkhard Cognitive Robotic Ryssell/Norvig: Artificial Intelligence



Planning in Configuration Space

Special regions in the configuration space for

* obstacles in work space (gray), | Results of planning in

e geometry of the robot (black) configuration space can
be directly used as
control for motion in

work space.
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Grid Based Search in Configuration Space

e.g. using graph search methods like A*

Ol
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Skeleton Based Search in Configuration Space

Skeleton: Connects certain points.
Search for path on skeleton.
e as Voronoi-Graph:
points with equal minimal
distances to obstacles

e as Visibility Graph:
Nodes at corners of obstacles
Arcs between mutually observable nodes

Problems:
e complex algorithms
e results often in detours
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Random Point Search in Configuration Space

Graph search through random points in free space.
Ranking of preferable areas by differently distributed points.
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Potential Field in Configuration Space

,Potentials at the field":
— Target attracts
— Obstacles repel

Can be combined with other
search methods. .

Can be used as control:
Robot follows attractions in the potential field.
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Potential field @
Control in a point (X,,Y,) /g/

as direction vector [F,(X,,Yo), Fy (X0,Y0)]
of vector field F(x,y) = [F, (x,y), F,(X,y)]

Special case:
Vector field F(X, y) is gradient of a potential field U(x, y)

F(x,y)= [dU(X,y)/dx, dU(x,y)/dy]

For application:
* Potential determined by environment/from sensory
Information

* Motion follows the gradient
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Potential field

obstacles

target

repelling fields

attracting field
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Potential field

Potential field by superposition (addition):

U(p) = Ugoal(p) +S Uobstacle(p)
F=-[dU/dx,dU/dy]
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Potential field

Benefits:
« direct usage for control
e |ocal evaluation

Problems:
e local minima

« Compensation of fields,

« "Trap“ by close obstacles
« oscillating movements for

e narrow areas

* high speed

Burkhard Cognitive Robotics Motion
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Potential field
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