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Models of Environment: World Model 
Robots interact with the environment  
based on their belief about the actual world. 
 
The recently available sensor data are sometimes sufficient only 

for “simple”  tasks in “simple environments” by appropriately 
designed robots (cf. situated robots), 

     e.g. line following, obstacle avoiding 
 
More complex tasks/environments need memory for  
integrating information over time/from different sensors: 
Worldmodel as description of actual situation. 
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Situation in Environment 
• Own pose and motion (self localization) 
• Poses and motions of other objects 
• Free space 

To be used for 
• Navigation 
• Path planning 
• Mapping (exploration and mapping of the environment) 
           SLAM = Simultaneous Localization And Mapping 
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Example: Restricted Observation at Time t 
  2D-Simulation League  
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Example: Memory of past situation at Time t-1 
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Combination: World Model at Time t 
  

World Model at t-1 + Perception at t 
In RoboNewbie implemented by LocalFieldView 
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Combination: World Model at Time t with Expectations 
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World Model:  “Belief” 
Internal representation of recent environment by given 
data structures for  
• Space 

Objects, poses, ... 
• Movements  

Direction, speed, ... 
• Actors  

Goals, actions... 
• Sociale relations 

Roles, duties ... 

„Belief“ instead of „knowledge“: 
World model may be incorrect! 
(Noisy/incomplete sensor data.) 



Update Cycle of World Model 
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worldmodel   
at time t-1 

worldmodel   
at time t 

perception 
at time t 

Integration 

Processing 
and Integration 
of sensor data 

    Sensors at time t 
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Discrete Modeling: States – Actions 

• Transition of states by  actions. 
•  xt+1  =  f (x1,x2,x3,...,xt , u1,u2,u3,...,ut ) 
     (deterministic or stochastic) 
 
• Markov Condition:  xt+1  =  f (xt , ut ) 
   (needs appropriately complete descriptions) 

 
 

 

Discrete time points t 
xt  : state at time t 
ut : action at time t 
zt : observation (sensor data, percepts …) at time  t 
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Stochastic World 
• Uncertainty with respect to states 
• Uncertainty regarding results of actions 
• Uncertainty regarding observations 
 
 

Bayesian Net 
(with Markov Condition) 

Probability distributions for:  
xi  state at time i 
ui  action at time i 
zi  observation at time i 
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Properties of Environments 
• Structure:       structured vs. chaotic 
• Scaling:          discrete vs. continuous 
• Dynamics:      rapidly changing vs. static 
• Definiteness:  deterministic/non-determistic/stochastic 
• Repeatability: episodic vs. constantly changing 
• Observability: 

• complete vs. partial 
• correct vs. uncertain 

• Influenceability:  
• complete vs.  partial 
• effective vs.ineffective 

 
 

Properties  
may appear differently to the robot. 
 
They depend on 
•  Available ressources: 
        „Bounded Rationality“ 
• Design decisions: 
         Data structures 
 



Overview 
• Introduction 
• Representations of Environments 
• Maps 
• Controversies about World Models 
• Formal Descriptions of World Models 
• Descriptions of Other Actors 
• Probabilistic Methods: Bayes Filter 
• Data Fusion/Integration 
• Kalman Filter 
• Particle Filter 
• SLAM 

 
Burkhard Cognitive Robotics  Worldmodels 14 



Burkhard Cognitive Robotics  Worldmodels 15 

 
 

 
 
 
 
 

Quantitative: 

    e.g. Cartesian coordinates (x, y), Polar coordinates (r, f) 

    needs treatment of similarity 
    

Qualitative: 
    e.g. "right in front” 
    
    depends on observer 
 

Formalisms for Representation 

Left in 
front Right 

behind 
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Gridbased Representation 
Occupancy Grid   

Free space can be described according to size of robot 

Potential field methods 
can be used for  
path planning. 
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Representation of Environments 
Allocentric 
Absolute values  
in common system 

Advantages:  
• Fixed objects with unique values 
• Updates only for moving objects 
• Common system for all robots 

Disadvantages:  
• Needs own position 
• Inconsistencies by  
  error propagation from localization 

observer 
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Egozentric  
 

 
 

 
 
 
 
 

Information relative to own position  

Advantage:  
• Consistent with recent perception 
 
Disadvantage:  
• Needs updates of all objects 

observer 

Representation of Environments 
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Transformations 
 
 
 
 
 
  

Transformations between egocentric and allocentric model 
using own position in the allocentric model. 
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Transformations 
Egozentric models may have different reference points, e.g.  
• Pose of sensor (e.g. camera) 
• Pose of robot (torso, foot point, …) 
Transformations between coordinates by cinematic chain. 
 

 

 
 

 
 
 
 
 

Information “relative to own position”  

Coordinates in an image are relative to the image,  
i.e. transformation determined by projection from 
camera coordinates to image plane. 

Ball distance in RoboNewbie class LocalFielView 
is distance from camera – not from foot! 
Camera height is 54 cm over ground, ball radius is 4,2cm . 



Transformations 

Burkhard Cognitive Robotics  Worldmodels 21 

Transformation between  
coordinates of foot point  
and  camera coordinates 
by translation to focal point 
and rotations 

(Xfeet,Yfeet,Zfeet) Xfeet 
Yfeet  

Zfeet 

View direction  Y 

Z 

X 

(X,Y,Z) 

Calculation  
by cinematic chain:   
•translation to neck 
•rotation Neck Yaw 
•rotation Neck Pitch  
•translation to focal point   



Projection 
Transformation from camera coordinates (X,Y,Z)  
to image coordinates (a1,a2) 
by projection: 
 
 
a1 = ( f/X ) Y 
a2 = ( f/X ) Z 
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View direction  Y 

Z 

X 

(X,Y,Z) 

a2 

a1 
f 

(a1,a2) 
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Problems with different models: Example  

By calculation of own position (e.g. using odometry),  
the robot beliefs the goal to be left of the robot. 

Robot beliefs to perceive the goal right in front. 

Usually,  
it is not clear which belief is correct. 

Problems with Inconsistent Informations/Models 
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Landmarks and Maps 
  
 
•„Natural landmarks“ 

•„Artificial landmarks“ with specific coding 

• „Active landmarks“ send signals  
 

Knowledge about landmarks by maps  

•Position 

•Size 

•Appearance ... 
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Map Related Problems 
Correspondence problems:  

– Matching of sensor data with objects in the map  
– Tracking of objects: 
    Matching of objects at consecutive time points 

 
Self-Localization: Own pose relative to a given map 

- by matching of observed objects with map 
- by dead reckoning 



Dead Reckoning 
Consecutive poses are estimated by 
-  Initial pose and  
-  Actions or sensory data 
    e.g. inertial system, odometry, … 
 
Problems: 

– Drift problems 
 
 

– „Kidnapped Robot Problem“:  
    Dead Reckoning not useful if robot has lost its position. 
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SLAM 
= Simultaneous Localization and Mapping 
 
Autonomous Map Building 
- Local environment of observer, e.g.  

- positions of recently seen landmarks relatively to observer 
- local occupancy grid 

- Global map using:  
- dead reckoning  
- landmarks recognized from different poses  
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Geometrical Methods for (Self)Localization 
Useful Data 
• Landmarks Li with known poses/positions 
• Distance d12 between landmarks  
• Angle fi in which robot sees Li 
• Angle j12 between landmarks from robot position 
• Distance di robot/landmark 

d1 

d2 

d12  j12 

L1 

L2 
f 

d 
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Trigonometry, Trilateration 
Calculations by triangles 
• Trilateration:   distances 
• Triangulation: angles 

 
Problems 
• Erroneous Measurements: distances, angles,… 
• Wrong landmarks (missing ones, ghost images …) 
• Bad use of formulas (e.g. sine around 0 ) 

 
 

Theorems on congruences 

Sine-, Cosine-, Tangens-Formulas 

Exploitation of Redundancies: 

Integration of data from different sources 
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Position by Intersecting Cycles 
 

 
Robot position on circle with distance di 

around landmark Li 
d1  

L1 

Robot position on circle with 
angle j12  for two landmarks 

 
(„Peripherie Angle Theorem“)  

d12  j12 

L1 

L2 
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Constraints by Geometrical Relations 
  

Where am I ? 
Where is the ball ? 

32 
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Constraints by Geometrical Relations 
  

33 
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Constraints by Geometrical Relations 
  

34 
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Constraints by Geometrical Relations 
  

Combination yields 2 possible positions 

35 
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Constraints by Geometrical Relations 1 Landmark 

2 Landmarks 

3 Landmarks 

Because of noise, constraints are fuzzy 



Constraints by Geometrical Relations 
Wrong landmarks/odometry may lead to inconsistencies 
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Controverses: How Much World Model? 
 
 

Finds Light 

Avoids light 
Braitenberg Vehikel 

„Ant at the beach finds her path without maps.“ 

Physical Symbol System Hypothesis 
or Physical Grounding Hypothesis? 
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Physical Symbol System Hypothesis 
             
    
    

"A physical symbol system has the necessary and 
sufficient means for intelligent action.“ 

Newell/Simon: "Computer Science as  Empirical 
Inquiry: Symbols and Search“ 

Many critics 
(Dreyfus, Searle, Penrose, ..., Brooks, Maes, Pfeiffer...) 

Needs: 
• Complete Descriptions of the Worlds 
• Algorithms for actions 

GOFAI= „good old fashioned AI“ 
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Physical Grounding Hypothesis 
  This hypothesis states that to build a system that is intelligent 
it is necessary to have its representations grounded in the 
physical world. Our experience with this approach is that once 
this commitment is made, the need for traditional symbolic 
representations fades entirely. The key observation is that the 
world is its own best model. It is always exactly up to date. It 
always contains every detail there is to be known. The trick is 
to sense it appropriately and often enough.  

To build a system based on the physical grounding hypothesis 
it is necessary to connect it to the world via a set of sensors 
and actuators. Typed input and output are no longer of 
interest. They are not physically grounded. 
R.A. Brooks: Elephants Don´t Play Chess 
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Physical Grounding Hypothesis 
  This hypothesis states that to build a system that is intelligent 
it is necessary to have its representations grounded in the 
physical world. Our experience with this approach is that once 
this commitment is made, the need for traditional symbolic 
representations fades entirely. The key observation is that the 
world is its own best model. It is always exactly up to date. It 
always contains every detail there is to be known. The trick is 
to sense it appropriately and often enough.  

To build a system based on the physical grounding hypothesis 
it is necessary to connect it to the world via a set of sensors 
and actuators. Typed input and output are no longer of 
interest. They are not physically grounded. 
R.A. Brooks: Elephants Don´t Play Chess 

New 
Problem 

But: To bring the Beer 
from the basement, the 
robot should have an idea 
about the location etc... 
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Knowledge Representation in AI 
Explicit Knowledge:  
     Facts, rules, …                                (rules of chess) 
Implicit Knowledge:  
     Deduced from explicit knowledge    (how to play chess) 
 
Description by (machine processible) formal systems, e.g.: 

• symbols for sensor data (e.g. pixels) 
• symbols for landmarks  
• symbols for relations (e.g. distances) 
• methods for calculations (e.g. image interpretation) 
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Syntax and Semantics 
Semantics: Meaning of symbols, meaning of sensor signals? 
•   by conventions 
•   by real world as common reference system 
 
Natural systems: experience, teaching 
 
Technical systems: formal semantics, algorithms 

Interpretation of sensor data by programs 
as  
image, force, motion, words, … 

Symbol Grounding 
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General Properties of Knowledge 
Imprecise knowledge („between 3 and 4 cm“) 
Uncertain knowledge („possibly 3 cm“) 

Probability Theory                  P( d=3cm ) = 60% 
Modale Logics             possible( d=3cm ) = true 

Vague knowledge („very near“) 
Multivalued Logics    truth-value( d=3cm ) = 0,7 
Fuzzy-Theory        ( d=3cm )Î “very near” = 70% 

 

Combinations:   „probably very near“ 
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General Properties of Knowledge 
Imprecise knowledge  
can be treated by alternatives (“or”) resp. intervals. 
 
Uncertain and vague knowledge by related theories: 
 
 Certain, reliabe Uncertain, unreliable 

Crisp 
 

Logics,   Set Theory,  
Algebra,   Analysis,                    
... 

Probability Theory, Statistics,            
Modal Logics, Decision Thory 
... 

Vague 
(„fuzzy“) 

Multi-Valued Logics 
Fuzzy Theory 
... 
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Probability Theory 
for environments with properties like 

 
• Definiteness:  deterministic/non-determistic/stochastic 
• Observability: 

• complete vs. partial 
• correct vs. uncertain ("noise") 

• Influenceability:  
• complete vs.  partial 
• effective vs. ineffective 
 

 

Properties may appear 
differently to the robot. 
They depend on 
 available ressources: 
„Bounded Rationality“ 



Overview 
• Introduction 
• Representations of Environments 
• Maps 
• Controverses about World Models 
• Formal Descriptions of World Models 
• Descriptions of Other Actors 
• Probabilistic Methods: Bayes Filter 
• Data Fusion/Integration 
• Kalman Filter 
• Particle Filter 
• SLAM 

 
 
 

Burkhard Cognitive Robotics  Worldmodels 49 



Burkhard Cognitive Robotics  Worldmodels 50 

Representation of Other Actors  
Actors: humans, robots, … 
General properties: 
• Morphology 
• Sensors, Actuators, … 
• Skills 
• Roles 
Situational properties 
• Pose 
• Bodily states: Control parameters, Sensor values, Energy,… 
• Mental states: Belief, Duties, Intentions, Plans, Emotions,… 
 
 
 
 

Philosophical Problems: 
– Consciousness 
– Free Will 
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Representation of Other Actors  
Representation of mental states 
     (Belief, Duties, Intentions, Plans, Emotions,…) 
e.g. by Modal and Temporal Logics 
 
 
 
 
 
 
 

IF BELIEF (Willie, task = bring water)  
AND CAN (Willie, task = bring water)  
THEN BELIEF (Opa, LATER(Oma, will have water)) 
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Modal Logical Representation 

starts, in, contemporary  
denote relations between 
temporal intervals 

(PhD thesis Andrea Miene - Bremen, 2003) 
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Representation of Other Actors 
Ascription or reality? 
Is it helpful for modeling and reasoning?  

„Likes Light“ 
„Intends to go to Light“ 

„Afraid from Light“ 
„Intends to depart from Light“ 
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Experiments in 2D-League RoboCup 
Observation and classification of opponent teams: 
• Player parameters (size, force, energy,…) 
• Skills (e.g. dribbling) 
• Actions (e.g. passing behavior) 
• Strategic behavior (e.g. offside trap) 
 
Coach agent can observe complete field: 
• Online observation/classification 
Logfiles can be analyzed 
• Offline mining Problem:  

Opponent team behavior  
depends on own team behavior. 
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Experiment: Behavior Recognition 
Behavior to be recognized: 
Which pass is performed under which conditions? 
 
Collection of “cases” from logfiles (by analysis over time): 
Case description by  
                 
 
 
            

PhD thesis 
Jan Wendler Trigger 

(part of situation) 
Behavior 
(part of situation) 

+ 
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Experiment: Behavior Recognition 
  Hypothesis of Case Based Reasoning (CBR): 

 Similar trigger leads to similar behavior. 

Application of Case Based Reasoning (CBR) 
for a given situation with known trigger: 
1. Search for cases with similar triggers in your collected cases. 
2. Adapt behavior of found cases. 
3. The adapted behavior is expected.  Needs: 

•Collection of cases. 
•Similarity measure. 
•Retrieval methods. 
•Adaptation methods. 
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Triggers T1,T2 described by attributes for: 
• Distances  
• Directions 
• Players 

Experiment: Similarity of Triggers 

Similarity of Triggers by weighted sum: 
 
 
                weights wi by experiments 
 

Trigger_sim(T1,T2)  =  Si=1,...n  wi * simi (a1
i , a2

i ) 

Similarities for attributes ai : sim i(a1
i , a2

i ) 
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Experiment: Evaluation 
Accuracy of prognosis was less than 50% 
 
Passing player  
• has limited view 
• may decide regarding not only actual local environment 
    (e.g. depending on team communication, mental state ,…) 
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Representation of „Social Relations“ 
Multi Robot Systems 
• Coordination (protocols) 
• Communication (protocols, languages) 
• Cooperation  
Organization (structures, hierarchies, ...) 
• roles (permanently) 
• tasks (temporarily) 
 
Social attributes 
• Responsibilities, duties, ... 
• Cooperativeness, altruism, … 
• Trustworthiness, reliability, believability, … 

Robots to  
• to other robots 
• to humans 
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Data Integration/Fusion 
„Fusion“, „Integration“ of information   
e.g. from motion (odometry) and observation 
 
 
 
 
 
Initial situation: 
Need methods for combination: 
• Calculations of the desired values 
• Estimation of reliability 
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Stochastic World 
• Uncertainties with respect to world state 
• Uncertainties regarding results of actions 
• Uncertainty regarding observations 
 
 

Observations provide new information 

Bayesian Net 

xi  state at time i 
ui  action at time i 
zi  observation at time i 
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Bayesian Model 
  Probability of state xt+1 after actions u1,..,ut   observations z1,..,zt+1 : 

 
Bel (xt+1)                 („Belief that world is in state xt+1) 

= P( xt+1 | u1,..,ut ,  z1,..,zt+1 )   

= a × P( zt+1 | xt+1, z1,..,zt , u1,..,ut  ) × P(xt+1 | z1,..,zt , u1,..,ut )   

                               (by Bayesian formula) 

= a × P( zt+1 | xt+1) ×   P(xt+1 | z1,..,zt , u1,..,ut )  

                                (by Markov condition)  
= a × P( zt+1 | xt+1) ×  bel (xt+1)  
 
where bel (xt+1) is the  
Probability of state xt+1  after actions u1,..,ut and old observations z1,..,zt  



Burkhard Cognitive Robotics  Worldmodels 64 

Bayesian Model 

Probability of state xt+1  after actions u1,..,ut and old observations z1,..,zt  
 
bel (xt+1) 
= P(xt+1 | z1,..,zt , u1,..,ut ) 
= ò P(xt+1 | xt , z1,..,zt , u1,..,ut ) × P(xt   | z1,..,zt , u1,..,ut ) dxt  
 
 
= ò P(xt+1 | xt ,ut ) × P(xt | z1,..,zt , u1,..,ut ) dxt  
 
 
= ò P(xt+1 | xt ,ut ) × P(xt | z1,..,zt , u1,..,ut-1) dxt  
 
 
= ò P(xt+1 | xt ,ut ) × Bel(xt ) dxt  

by Markov Condition  

 by assuming xt independent from ut 

by using total probability 
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Bayesian Model 
Recursion formula  

Bel(xt+1) = a × ò P( zt+1 | xt+1) × P(xt+1 | xt ,ut ) × Bel(xt ) dxt  

„Bayes Filter“: 
Start with initial belief Bel(x0)  
 
Update by  
a) „Motion model“  P(xt+1 | xt ,ut )            
    bel(xt+1) =  ò P(xt+1 | xt ,ut ) × Bel(xt ) dxt  
 
b) „Sensor model“ P( zt+1 | xt+1)  

     Bel(xt+1) = a × P( zt+1 | xt+1) × bel(xt+1 )   
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Tutorial: 
 Thrun 2000 

Motion model  P(xt+1 | xt ,ut )  

Motion Model 

Problems with control errors 
and odometry errors 
(especially for angles) 
e.g. by  
• Lack of traction 
• Hardware problems 
• Obstacles (other robots) 



laser data 
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Sensor Model 
Sensor model: P( zt | xt) 
Correspondence of observation zt with state xt 
(e.g. observed distances/angles for landmarks) 
 
 

From Tutorial: 
 Thrun 2000 
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Bayes Estimation for Several Hypothesis 
 
 
 
 
 
 

Bel(s) 
x 

P(o|s) 
x 

x 
Bel(x) 

Initial estimation equally distributed: 

Observation: Robot sees a door, but does not know which one: 

Estimation after observation: 

Localization Example by  
S. Thrun, 
Images by 
J. Hoffmann 

Bel(x0) 
= bel(x0)  

Bel(x1)  

P(z0|x0) 

= a × P(z0|x0) × bel(x0)  
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Bayes Estimation for Several Hypothesis 
  Robot moves: 

Bel(s) 

s 

New estimation according to action model: 
bel (x1) 

=  ò P(x1|x0 ,u0 ) × Bel(x0) dx0  
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Bayes Estimation for Several Hypothesis 
  Robot moves: 

Bel(s) 

s 

New estimation according to action model: 
bel (x1) 

=  ò P(x1|x0,u0) × Bel(x0) dx0  

Bel(s) 

s 

P(o|s) 

Observation: Robot sees a door, but does not know which one: 

Estimation after observation: 

P(z1|x1) 

Bel(x1)  

= a × P(z1|x1) × bel(x1)  
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Bayes Filter: „Markov-localization“ 
  

Initialisation:   Bel(x0)  
(initial position estimation) 

A-posteriori estimation after observation zt+1 : 
Bel (xt+1) = a × P( zt+1 | xt+1) × bel(xt+1 ) 
with incrementally calculated  
normalisation factor a = 1/ ò Bel(xt) dxt 

A-priori estimation after action ut : 

 bel (xt+1) = ò P(xt+1 | xt ,ut ) × Bel(xt ) dxt 
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Bayes Filter: „Markov-localization“ 
Different methods for complex calculations of 
 
 
 
• Grid based (å  instead of  ò  )  
• Kalman Filter  
     for Gauß-distributions and linear models 
     (extensions for more general situations) 
• Monte Carlo Filter/Particle Filter/Importance Sampling 
     approximation by weighted examples (particles) 

 
 
 
 

bel (xt+1) = ò P(xt+1 | xt ,ut ) Bel(xt ) dxt 
Bel (xt+1) = a P( zt+1 | xt+1) bel(xt+1 ) 
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Data Integration/Fusion: Model 
  

x´(t) x(t-1) 

x(t) 
x(t+1) 

x(t+2) 

u(t) 

u(t)+v(t) 

z(t) 
z´(t) 

x´(t) : expected state after action u(t) 
z´(t) : expected sensor information  

x(t) actual state: action u(t) with noise v(t), 
z(t) actual sensor information with noise w(t) 

Data for 
a-priori estimation 
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Idea of Integration/Fusion 
  

x(t-1) 

x(t) u(t)+v(t) 

z(t) 
x´(t) u(t) 

z´(t) 

x´(t) : expected state after motion u(t) in beliefed state x´´(t)  
z´(t) : expected sensor information  

x(t) actual state 
z(t) actual sensor information 

x´´(t-1) 

xz(t) 

xz(t) : expected state  
for sensor information z(t)  

Data for 
a-posteriori estimation 
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Idea of Integration/Fusion 
  

x(t-1) 

x(t) u(t)+v(t) 

z(t) 
x´(t) u(t) 

z´(t) 

x´´(t-1) 

xz(t) 

xz(t) : expected state  
for sensor information z(t)  

x´´(t) 

x´´(t) : new belief 

x(t) actual state 
z(t) actual sensor information 

x´(t) : expected state after motion u(t) in state x´´(t)  
z´(t) : expected sensor information  
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Kalman filter  
Needs special conditions:  
Linear models: 
• action model    x(t) = A × x(t-1) + v(t)  
• sensor model   z(t) = H × x(t)    + w(t)  

with matrices A ,  H  
• Normally distributed error (Gaussian distributions) 
    estimation for x(t) :  P(X=x) = N(m x ,S x ) × (x)  
    estimation for z(t)  :  P(Z=z)  = N(m z ,S z ) × (x)  
    with mean m  and covariance matrices S  
• Normally distributed noise v(t), w(t)  
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Gaussian Distributions 
Gaussian Distributions (Normal Distribution N) 
are determined by mean und variance 

  s 

  m 
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×
×

=
x

exN

For one Variable X  
with mean m und variance s2: 
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Gaussian Distributions 
  For n-dimensional vector X 

with mean vector m and covariance matrix  S : 
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Mean m is the estimation, covariance matrix S  is the error 
 
A-priori-estimation by action model: 
 mx´(t) = x´(t)  = A × x´´(t-1) + v(t)           Error:    Sx´(t)  
 
 
A-posteriori estimation  
mx´´(t) = x´´(t) = x´(t)+c×( xz(t)-x´(t)),         Error: Sx´´(t)  
        with cÎ[0,1] determined 
        using sensor model: z(t) = H × x(t) + w(t)  
        mz  is the measurement,                   Error:   Sz (t) 
 

 

Kalman filter  

In practice, these errors are 
usually determined by estimation. 

In practice, these errors can usually be measured. 
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Under the assumption of linear models, i.e. 
actions model  x(t) = A × x(t-1) + v(t)  
sensor model   z(t) = H × x(t) + w(t)  

with matrices A, H  and Gaussian error v(t), w(t) 

 
 
Gaussian Distributions for x(t-1)  
lead to Gaussian Distributions for x(t) und  z(t) : 

  P(x(t) | x(t-1) ) =  N( A × x(t-1), Sx(t) ) ( x(t) ) 
  P(z(t) | x(t) )     =  N( H × x(t),    Sz(t) ) ( z(t) ) 

  

Gaussian Distributions 
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Kalman filter  
Calculation of actual distributions from previous distributions: 
 
a-priori-estimation by action model: 
        
 
 
 
Q is covariance matrix for Gaussian noise v(t)  
(Q could also depend on time). 

mx´(t)  = x´(t)  = A × x´´(t-1)  
    

   Sx´(t)  = A × Sx´´(t-1) × AT  + Q 
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Kalman filter  
a-posteriori estimation by observation model 
 
Uses difference  z(t) – H × x´(t)  („Innovation“) between  
actual observation z(t) and expected observation H × x´(t) .  

 

 

Conversion to position and weighting by „Kalman-Gain“:  
 
               
          using covariance matrix R for sensor-noise w(t) 

 

   
     

 mx´´(t) = x´´(t) = x´(t) + K(t) × ( z(t) – H × x´(t) )   
  

 Sx´´(t)  = ( I – K(t) × H ) × Sx´(t)  

K(t) =  Sx´(t) × HT  /  ( H × Sx´(t) × HT + R )      
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Kalman filter  
Recursive procedure:  
First estimation by action model  
Second estimation by observation model: 

x´(t) = A × x´´(t-1)   
   

 Sx´ (t) = A×Sx´´(t-1)×AT  + Q 

 K(t) =  Sx´ (t)×HT  /  ( H×Sx´ (t)×HT + R )    
 x´´(t) = x´(t) + K(t)×(z(t) – H×x´(t) )   

  
 Sx´´ (t)  = ( I – K(t)×H )×Sx´ (t)  

x´(0) ,  Sx´´ (0)  
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Kalman filter  
  

x(t-1) 

x(t) 

z(t) 
x´(t) u(t) 

z´(t) 

x´(t) : expected state after u(t) starting in x´´(t)  
z´(t) : expected sensor information  

x(t) actual state 
z(t) actual  sensor information 

x´´(t-1) 

x´´(t) 

x´´(t) : new hypothesis  
 x´´(t) = x´(t) + K(t) × ( z(t) – H x´(t) )   
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Kalman Filter: 1D-Example 
  A priori estimation by motion model 

estimation according to Observation 

A posteriori estimation 
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Kalman filter  
Assumptions: 

Linear Model 
Gaussian error 
Only one hypothesis 

Extensions: 
• Extended Kalman Filter 
    Linearization by 1. derivation of models  
• Unscented Kalman Filter 
    Linearization by linear regression of models 
• Parallel Kalman Filters 
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Monte Carlo Filter/Particle Filter 
Update after action u and observation z by repeated calculations. 
A distribution is represented by “particles” [st+1

(i) , wt+1
(i)]  

with state st+1
(i) and weight wt+1

(i)  
Update method: 
1) Choice of examples st

(i)  with probability wt
(i)  

2) New examples [st+1
(i), wt+1

(i)]  
          st+1

(i)  by action model    P (xt+1
(i)

 | u, xt
(i) )  

          wt+1
(i) by sensor model  wt+1

(i) := b × P(z|xt+1
(i))  

                                                      (normalization b = (S wt+1
(i))-1  )  

Replacement of some particles by randomly chosen new 
 examples (for kidnapping problem) 



Monte Carlo Localization (MCL) 
Adapted from 

Tutorial: 
 Thrun 2000 
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MCL: Importance Sampling 
)()|()( tttt sBelsoPsBel h¬

)|( tt soP
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P( zt | xt)  

Bel(xt+1) = a × P( zt+1 | xt+1) × bel(xt+1 )  wt+1
(i) := b × P(z|xt+1

(i)) 



  
 ò ++ ¬ tttttt ssBelsasPsBel d)(),|()( 11

MCL: Robot Motion  

motion 

Burkhard 93 Cognitive Robotics  Worldmodels 

bel(xt+1) =  ò P(xt+1 | xt ,ut ) × Bel(xt ) dxt  
Choice of examples st

(i)  with probability wt
(i)  

 st+1
(i)  by action model    P (xt+1

(i)
 | u, xt

(i) )  



)|( loP t

MCL: Importance Sampling 
)()|()( 1111 ++++ ¬ tttt sBelsoPsBel h
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Bel(xt+1) = a × P( zt+1 | xt+1) × bel(xt+1 )  
Bel(xt+1) = a × P( zt+1 | xt+1) × bel(xt+1 )  wt+1

(i) := b × P(z|xt+1
(i)) 
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Monte Carlo Filter/Particle Filter 
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Monte Carlo Filter/Particle Filter 

Robot in  left goal  
(figures a-d):  
Particle distribution after 
1, 8, 14, 40 cycles.  
 
„Kidnapped robot“ 
(figures e, f): 
New stabilization  
after 13 cycles 

(GermanTeam Report 2004) 
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Monte Carlo Filter/Particle Filter 
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Monte Carlo Filter/Particle Filter 
Can handle several hypothesis (several clusters of particles)  
Any-time-Algorithm (number of particles). 
Treatment of „Kidnapped Robot Problem“:  

Particles near robot increase: 
     better evaluation (consistent observations),  
     i.e. higher probability for new particles. 
Particles far from robot decrease 
     (inconsistent observations). 

Cluster move from old pose to correct new pose. 
 
Re-stabilization time depends on number of random particles: 
Trade-off between persistency and adaptability! 



Overview 
• Introduction 
• Representations of Environments 
• Maps 
• Controverses about World Models 
• Formal Descriptions of World Models 
• Descriptions of Other Actors 
• Probabilistic Methods: Bayes Filter 
• Data Fusion/Integration 
• Kalman Filter 
• Particle Filter 
• SLAM 

 
 Burkhard Cognitive Robotics  Worldmodels 99 



Burkhard Cognitive Robotics  Worldmodels 100 

Mapping 
SLAM = Simultaneous Localization and Mapping 
 
Robot builts a map using correspondences of positions, 

motions, landmarks, sensor data, … 
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Mapping 
Useful information: 
• Known positions and directions 
• Odometry (or control commands) 
• Landmarks (correspondence problems to be solved) 
• Common knowledge (e.g. about buildings) 
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Probabilistic Mapping: Kalmanfilter 
 
Additional Variables for positions of landmarks. 
Actualization of a Gauß-distribution with 
 
2n+3 dimensional mean m  for estimation of own pose (3) and 

positions of n landmarks (each 2)  
 
(2n+3)x(2n+3) dimensional covariance matrix  S  for error 

estimation 
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Probabilistic Mapping: Kalmanfilter 
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Probabilistic Mapping: Kalmanfilter 
  cooperative mapping by  

several robots 
(Sebastian Thrun, CMU) 
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Probabilistic Mapping: Cooperating Robots 
  (Sebastian Thrun, CMU) 
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