
Hans-Dieter Burkhard
June 2014

Hints for RoboNewbie

Resources
Required special resources, download from
 http://www.naoteamhumboldt.de/projects/robonewbie

1. RoboNewbie
2. MotionEditor
3. SimSpark RoboCup 3D Soccer Simulation (SimSpark RCSS)

Additional materials for installation on that page.

Programs and related instructions are available on
http://www.naoteamhumboldt.de/projects/robonewbie/

Filling the Gap between Simulation and Reality ICIT 2011 4

Simulation

Communication
via protocols (TCP)

Effector messages
Motor commands
similar to real robot

Perceptor messages
Vision, acoustic, inertial,
 ….

„Physical world“

Simulation of actions
 and percepts

- Virtual playground
- Virtual players
- Referee

Noise
Control of
players

Control of
players

11 programs
Team 1

11 programs
Team 2

Server and Monitor developed
 by volunteers of RoboCup community

Open Software
You can make your own experiences by using open software
from RoboCup community (explore the internet):
• 3D-Simulation League:
 SimSpark (Server + Monitor)

• RoboNewbie Agents of NaoTeam Humboldt

Thanks to
NaoTeam Humboldt
Magma Offenburg

All resources are placed on
our web page (NaoTeam Humboldt)

Thanks to
RoboCup Community

http://simspark.sourceforge.net/wiki

Start of programs
• Start the server with „rcssserver3d.exe“
• Start your (example) program in NetBeans
• Klick “k” in the monitor window (“kick-off”)
• Klick “b” in the monitor window (“play-on”)

According to soccer rules,
game state should be “play-on”,
because otherwise players are not
allowed to cross over middle line

Simulation Cycle
Cycles (basically 20 msec) with the following steps:
• server sends individual server message with

perceptor values (“sensations”) to the agents.
• agents can process perceptor values
• agents can make decisions for next actions
• agent can send agent messages with effector

commands
• server collects the effector commands of all agents

and calculates resulting new situations
Note that messages are interleaved (next slide)!

Synchronization Server/Agent

Figure from the SimSpark-Wiki :
http://simspark.sourceforge.net/wiki/i

public static void main(String args[]) {
 agent.init();
 agent.run(<time until stop in seconds>);
}

 static final String id = "1";
 static final String team = "myT";

 static final double beamX = -1;
 static final double beamY = 0;
 static final double beamRot = 0;

 Player Identification
(example)

 initial position (“beam”)
(example)

Actual sizes in our distribution are 10x7 m

F2L

F1L

G1L

G2L

F1R

F2R

G2R

G1R

 static final double beamX = -1;
 static final double beamY = 0;
 static final double beamRot = 0;

 initial position must be
in the own (left) half,
i.e. beamX must be negative

for (int i = 0; i < totalServerCycles; i++) {

 sense();

 think();

 act();

 Basic cycle in
Agent_SimpleSoccer

 Basic cycle in
Agent_SimpleSoccer

localView.update();

percIn.update();
 parse all sensor values
obtained from the server

 update worldmodel of visual data

lookAround.look();

effOut.sendAgentMessage();

kfMotion.executeKeyframeSequence();
 next commands to perform a keyframe motion

 next commands to look around

 send commands to server

Motor commands
effOut.setJointCommand(RobotConsts.<joint-name>, <speed>);

<joint-name> is the name of a joint,

 <speed> sets the angular speed (radians per second)
 the speed is continously maintained until a new speed is set
 (hence, speed=0 must be set to stop a motion)

 code completion
 effOut.setJointCommand(RobotConsts. , <speed>);
 shows all available names

Motion Skill: Set of Keyframes
300 0 -21 -62 32 -69 -59 0 -8 -10 -0 12 14 0 -8 12 -0 -9 11 -110 -60 69 59
300 -5 -21 -62 46 -69 -59 0 0 -10 -0 17 5 0 0 18 -0 -9 4 -110 -46 69 59
300 0 -21 -62 60 -69 -59 0 8 -10 -0 12 -11 0 8 12 -0 -3 -11 -110 -32 69 59
300 0 -21 -75 60 -69 -59 0 8 6 -36 27 -11 0 8 12 -15 7 -11 -97 -32 69 59
300 0 -21 -86 60 -69 -59 0 8 42 -69 13 -11 0 8 12 -30 23 -11 -86 -32 69 59
300 0 -21 -110 60 -69 -59 0 8 12 -0 -9 -11 0 8 -10 -0 12 -14 -62 -32 69 59
300 -5 -21 -110 46 -69 -59 0 0 18 -0 -9 -4 0 0 -10 -0 17 -5 -62 -46 69 59
300 0 -21 -110 32 -69 -59 0 -8 12 -0 -3 11 0 -8 -10 -0 12 11 -62 -60 69 59
300 0 -21 -97 32 -69 -59 0 -8 12 -15 7 11 0 -8 6 -36 27 11 -75 -60 69 59
300 0 -21 -84 32 -69 -59 0 -8 12 -30 23 11 0 -8 42 -69 13 11 -84 -60 69 59

FILE walk_forward-flemming-nika.txt
in …/keyframes

Each line starts with the transition time followed by the target
angles of joints in a predefined order.

Keyframe sequences are “played” by class keyframeMotion.

Order of Joints in our Keyframes

NeckYaw = 0
NeckPitch = 1
LeftShoulderPitch =2
LeftShoulderYaw = 3
LeftArmRoll = 4
LeftArmYaw = 5
LeftHipYawPitch = 6
LeftHipRoll = 7
LeftHipPitch = 8
LeftKneePitch = 9
LeftFootPitch = 10

LeftFootRoll = 11
RightHipYawPitch = 12
RightHipRoll = 13
RightHipPitch = 14
RightKneePitch = 15
RightFootPitch = 16
 RightFootRoll = 17
RightShoulderPitch = 18
RightShoulderYaw = 19
RightArmRoll = 20
RightArmYaw = 21

Development of Keyframe Motions
Develop the new motion using MotionEditor for creation and

agentKeyframeDeveloper for test.

Extend the program KeyframeMotion at 3 places, e.g.:

• private static KeyframeSequence KICK_SEQUENCE;
• KICK_SEQUENCE = keyframeReader.getSequenceFromFile(„kick.txt");
• public void setKick() {… actualSequence = KICK_SEQUENCE …}

• Use the new motion by calling setKick() in your program.
 (as e.g. in Agent_SimpleSoccer)

Motion Editor
is described by

 MotionEditor.pdf

Perceptors of SimSpark Soccer Simulator
• Hinge Joint Perceptors
• Vision Perceptor at the head
• Gyrometer in the torso
• Accelerometer in the torso
• Force Resistance Perceptor at the feets
• Hear Perceptor at the head
• Game State Perceptor

Positions of joints
Example:

percIn.getJoint(RobotConsts.LeftShoulderPitch)

returns the position of LeftShoulderPitch
in radians, can be convertd to degrees:

Math.toDegrees(percIn.getJoint(RobotConsts.LeftShoulderPitch))

 Joints have same names as for motor commands.

 Vision Perceptor
Information comes only each 3rd cycle, i.e. each 60 msec.
No image processing.
Simulator provides correct perceptor values:

(Polar-)Coordinates relatively to the pose of the camera
(i.e. facing direction of the robot head).

View angle of camera:120 degrees horizontally and vertically

Facing
forwards

Facing
sidewards

 Coordinates by Vision Perceptor

The server sends polar coordinates.
RoboNewbie uses Vector3D format from
org.apache.commons.math3.geometry.euclidean.threed.Vector3D
with methods for conversion and access.

= a in RoboNewbie

Examples:
ballCoords.getAlpha() for horizontal angle
ballCoords.getNorm() for Distance

Visual Objects in SimSpark
Goal posts
Corner Flags
Lines

Ball

Players with
• Team name
• Player id
• Body parts

• Head
• Right lower arm
• Left lower arm
• Right foot
• Left foot

Examples:

percIn.getGoalPost(FieldConsts.GoalPostID.G2L);
percIn.getBodyPart(PlayerVisionPerceptor.BodyPart.llowerarm);

Because Visual Perceptor comes only at
each 3rd cycle, it is recommended to use
LocalFieldView (to be explained later)

 LookAroundMotion
LookAroundMotion moves the head (the camera) periodically:

Turns down to about 40°,
back to upright position,
then left to about 60°,
then right to about -60°
and back to initial position.

The period takes about 1.8 seconds, provided by
 public static final double LOOK_TIME = 1.8;

Objects are perceived with coordinates relatively to camera.
LocalFieldView makes an approximative translation
to coordinates relatively for facing forwards (see below).

Burkhard Cognitive Robotics Sensors 24

You can change this values in
LookAroundMotion
(and adapt LOOK_TIME if necessary).

LocalFieldView
Maintains a ball model:
It provides
• methods for coordinates:

• last time of visibility:

• actual visibility (last 3 cycles):

Calculate if ball was seen in the last lookAround period:

BallModel ball = localView.getBall();

Vector3D vecBall = ball.getCoords();
vecBall.getAlpha();
vecBall.getNorm();
vecBall.getX();

ball.getTimeStamp();

ball.isInFOVnow();

serverTime - ball.getTimeStamp() < lookTime;

Related models are maintained for other visible objects.
See agent_TestLocalFieldView for examples.

Facing forwards Facing
sidewards

 Preprocessing for Perception in LocalFieldView
LookAroundMotion moves the head (the camera)
periodically as described above.
Objects perceived with different coordinates relatively to camera.

Burkhard Cognitive Robotics Sensors 26

But LocalFieldView needs unique coordinates (facing forwards).

Simplification in RoboNewbie
The vision perceptor collects visual data while moving the head.

The position of an object is described by polar coordinates
 (d, a, d) with distance d, horicontal angle a and vertical angle d .

Direction of the head (camera) by LookAroundMotion is:
1. in horizontal direction (yaw y) while vertical angle (pitch f) is 0.
2. in vertical direction (pitch f) while horizontal angle (yaw y) is 0.

LocalFieldView is to provide transformed data (d’, a’, d’)
according to the coordinate system when facing forward.

Burkhard Cognitive Robotics Sensors 27

Simplification in RoboNewbie
The distance d remains unchanged, i.e. d’ = d,
but angles a’ and d’ need to be calculated from a, d, y, f .
Correct calculation needs related transformations.

Instead, a simple approximation is performed by RoboNewbie:
a’ and d’ are calculated using the offsets y resp. f .

The result is correct
• for vertical angle d’ .
• for horizontal angle a’ as long as f = 0 .
It is only an approximation for angle a’ if f ≠ 0 (head tilded)

Burkhard Cognitive Robotics Sensors 28

Simplification in RoboNewbie

Burkhard Cognitive Robotics Sensors 29

The angles d and a of perception change according
to the change from XY-plane to X’Y-plane (tilded head).

Correct transformations
would need complex
geometrical calculations.

Drawback
of simplified calculation:
Deviations of position
for near objects.

	Foliennummer 1
	Resources
	Foliennummer 3
	Simulation
	Open Software
	Start of programs
	Simulation Cycle
	Synchronization Server/Agent
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12
	Foliennummer 13
	Motor commands
	Motion Skill: Set of Keyframes
	Order of Joints in our Keyframes
	Development of Keyframe Motions
	Motion Editor
	Perceptors of SimSpark Soccer Simulator
	Positions of joints
	� Vision Perceptor
	� Coordinates by Vision Perceptor
	Visual Objects in SimSpark
	 LookAroundMotion
	LocalFieldView
	 Preprocessing for Perception in LocalFieldView
	Simplification in RoboNewbie
	Simplification in RoboNewbie
	Simplification in RoboNewbie

