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Motion Control 
Commands for the actuators (motors) to reach next pose(s)  
determined e.g. by 
• a given (predefined) trajectory 
• maintaining special conditions (e.g. PID controller)  
• reply to sensor input (e.g. sensor actor coupling)  
regarding e.g.: 

• Positions, Forces, Speed 
• Real time requirements 
• Compensation  for  

- Environmental disturbance (short term) 
- Battery, temperature (middle term) 
- Wear (long term) 
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Motion control 
Feedforward control/open loop control: 

– Fixed predefined control 
– Simple realization 
– No adaptation 

 
 
Feedback control/closed loop control: 

– Sensor controlled motions 
– Adaptation using sensor signals 
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Keyframe motions? 

„blind“ 



Closed Loop Controller 
Controls a process such that specified objectives are 

achieved or maintained. 
Setpoint:  
The desired value of the process to be reached or maintained 
    (e.g. bring the arm to a position or hold it on a position) 
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Segway 



Control loop 

Burkhard Cognitive Robotics  Motion 6 

Controller 
 

   Process 
 

Noise Controlled  
variable  
y(t)  

Control  
variable  
u(t)  

Setpoint 
w(t)  

feedback 

Control  
deviation 
e(t) 

- 

The controlled variable y(t) should be equal to setpoint w(t). 
The error e(t) := w(t) – y(t) is determined by feedback. 
The controller determines the control variable u(t) related  to e(t). 



Control loop 
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Controller 
    fControl 

   Process 
     fProcess 

Noise Controlled  
variable  
y(t)  

Control  
variable  
u(t)  

Setpoint 
w(t)  

feedback 

Control  
deviation 
e(t) 

- 

Description without noise:    y(t+1) = fProcess(fControl(w(t)-y(t))) 
 
Objectives: e(T) =  w(T) – y(T) = 0  
                   at a certain time T ( or for all t >=T ) 
 
ØDesign of individual control from formal description.  
ØUsage of generic methods (fuzzy control, PID control). 
 



Control loop 
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Controller 
    fControl 

   Process 
     fProcess 

Noise Controlled  
variable  
y(t)  

Control  
variable  
u(t)  

Setpoint 
w(t)  

feedback 

Control  
deviation 
e(t) 

- 

Problems:  
• Delayed control. 
• Noise of process, sensors, and controls. 
• Inertia of process. 

Can lead to overshooting 
and oscillations 



Control loop 

Burkhard Cognitive Robotics  Motion 9 

time 

Control 
variable 

Set point 

From WikiMedia, 
Author Magnus Manske 



Proportional Control (P-Control)  
      control u(t)  ~  deviation e(t) := w(t)-y(t) 
 

 
Small K:  slow movement to setpoint w(t) 
Large K: overshooting, oscillations 
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u(t) =  K · e(t) with some constant K 

  P-Control 
     K · e(t) 

   Process 
     fProcess 

Noise Controlled  
variable  
y(t)  

Control  
variable  
u(t)  

Setpoint 
w(t)  

feedback 

Control  
deviation 
e(t) 

- 



Integral Control (I-Control)  
control u(t)  ~  duration and amount of deviation e(t) := w(t)-y(t) 
 

 
Can compensate for low proportional control, 
but continues changing for some time 
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  I-Control 
K · 

   Process 
     fProcess 

Noise Controlled  
variable  
y(t)  

Control  
variable  
u(t)  

Setpoint 
w(t)  

feedback 

Control  
deviation 
e(t) 

- 

u(t) =  K ·                      with some constant K i
l

1i i t)e(t Då =

i
l

1i i t)e(t Då =



Derivative Control (D-Control)  
control u(t)  ~ change of deviation e(t) := w(t)-y(t) 
 
 

Burkhard Cognitive Robotics  Motion 12 

D-Control 
K/Dt ·[e(t)-e(t-1)] 

   Process 
     fProcess 

Noise Controlled  
variable  
y(t)  

Control  
variable  
u(t)  

Setpoint 
w(t)  

feedback 

Control  
deviation 
e(t) 

- 

u(t) =  K ·  1/Dt · [ e(t) - e(t-1) ]    with some constant K 

Fast respond to a "jump" of deviation. 
No respond to permanently constant error. 
Problem for noisy measurements. 
Can only be used in combination with other controls . 



Combination: PID-Controller 
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   Process 
     fProcess 

Noise Controlled  
variable  
y(t)  

Control  
variable  
u(t)  

Setpoint 
w(t)  

feedback 

Control  
deviation 
e(t) 

- 

u(t) = KP · e(t) + KI ·                 + KD/Dt ·[e(t)-e(t-1)] 
with appropriately chosen constants KP, KI and KD 

D-Control 
KD/Dt ·[e(t)-e(t-1)] 

  P-Control 
     KP · e(t) 

  I-Control 
KI · i

l

1i i t)e(t Då =

i
l

1i i t)e(t Då =

Similarly:  
PI-Controller 
PD-Controller 

+ 



(Empirical) Design 

Burkhard Cognitive Robotics  Motion 14 

time 

Control 
variable 

Set point 

Adapt PID-parameters  
according to control behavior 

From WikiMedia, 
Author Magnus Manske 



Further Controllers 
• Fuzzy-Control: 

– Fuzzification:  
   Transformation of controlled values y(t) to linguistic terms 
– Application of Fuzzy-rules for linguistic terms 
– Defuzzification:  
   Transformation of linguistic terms to control values u(t) 

• Neural Networks etc.  
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Keyframe Controller 
Fixed time to arrive at target keyframe. 
(Linear) interpolation according to time.  
Some smoothness by inertia of limbs/motors. 
 
Customized motors have their own controllers … 
 
RoboNewbie uses some kind of proportional controller 
(difference to target angles) 
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Jacobi-Matrix 

Burkhard 
Cognitive Robotics  Motion 
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   Jacobi-Matrix:  J =        ∂f(q)/ ∂q   =   [∂fi / ∂qj ]ij  
                                        
                                    ∂f1/∂q1  …  ∂f1/∂qn            
                           J =  
                                                      ∂fm/∂q1  …  ∂fm/∂qn 

Kinematics of motions (velocities) with control parameters q: 
 dp/dt = df(q)/dt = ∂f(q)/∂q • dq/dt = J dq/dt   

Relation between workspace with poses p=(p1,…,pm) and 
configuration space with configurations q=(q1,…,qn)  
is given by Kinematics:  p=f(q)         

÷
÷
÷
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Jacobi-Matrix 
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Approximation of small deviations Dp near p=f(q) is given by  
                                 Dp ≈ J(p) Dq 
 
To reach a position p‘= p+Dp from p=f(q) 
the control can calculate Dq such that 
                           p‘= p+Dp ≈ f(q)+ J(p) Dq 
and then perform Dq . 
 

 
 
   



Inverse Jacobi-Matrix 
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Kinematics of motions: 
 dp/dt = J(p) dq/dt 

Inverse Kinematics of motions: 
dq/dt = J-1(p) dp/dt 

 

The change Dq of control parameters q  
for change Dp  of position p is approximated by: 

Dq = J-1(p) Dp 



Example „Planar Leg“ 
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q1 

x (q1, q2) 
 

q2 

Control space q1, q2  

Burkhard/Domańska 

q1 

q2 

X 

l2 

l1 

foot 
(x.y) 

Y 

Work space  x,y  



Example „Planar Leg“ 
Kinematics: 
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–Rotation by Q1 

–Translation by l1 

–Rotation by Q2   

–Translation by l2 

 

q1 

q2 

X 

l2 

l1 

foot 
(x.y) 

Y 



Example „Planar Leg“ 
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l1cos(Q1)  + 

p = f(q) = 
l1 sin(Q1)  + 

l2cos( Q1 + Q2) 

l2sin( Q1 + Q2) 
= 

fx(Q1,Q2) 

fy(Q1,Q2) 

-l1sin(Q1) 
 J = ∂f(q)/ ∂q = 

l1cos(Q1)+   

-l2sin(Q1 + Q2) 

l2cos(Q1 + Q2) 

- l2sin(Q1 + Q2) 

l2cos(Q1 + Q2) 



Example „Planar Leg“ 
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=  l1 l2  sin(Q2) = 0  

-l1sin(Q1) 
 ∂f(q)/ ∂q = 

l1cos(Q1)+ 

-l2sin(Q1 + Q2) 

l2cos(Q1 + Q2) 

for  Q2 = 0 , p , -p  

Restricted motion  
for  Q2 = 0 , p , -p  
(singularities) 

Determinant of Jacobi Matrix:   

-l2sin(Q1 + Q2) 

l2cos(Q1 +Q2) 

Example from Dudek/Jenkin: 
Computational Principles of Mobile Robotics 



Singularities of Jacobi Matrix 
p = f(q) is not invertible at p  if  |J(p)|= 0 :  
 
Some points in the neighborhood of p are not reachable. 
Values of control parameters can become very high in 
the neighborhood of p. 
 
Controls avoid neighborhood of p 
because of problems for control. 
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Pseudo Inverse of Jacobian Matrix 

Pseudo-Inverse J+  can be used  
instead of J-1 for non-quadratic m´n - matrices J : 
(n = number of control parameters) 
 
If  rank J(p) = n  then  
• Pseudo-Inverse J+ = (Jt  J )-1   Jt 

• J+  is Left-Inverse of J 

     Dp ≈ J(p) Dq 
J+(p) Dp ≈ J+(p) J(p) Dq = (Jt(p) J(p) )-1 Jt (p) J(p) Dq 
                                      = (Jt(p) J(p) )-1 ( Jt (p)J(p) ) Dq = Dq  

     Dq ≈ J(p)+ Dp 
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(Moore-Penrose-Inverse) 



Pseudo Inverse of Jacobian Matrix 

Problems near singularities at p  (rank J(p)<n):  
• Several neighboring points  are not reachable from exactly p 

(no motion into that direction) 
• Small changes of Dp lead to very huge changes Dq  of control 

parameters  in the neighborhood of p 
 

 
More complex calculation  of  J(p)+  if rank J(p) < n : 
    Dq ≈ J(p)+ Dp  
    gives best possible solution Dq,  
    i.e. minimizes the quadratic error (Dp - J(p) Dq )2 
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(Moore-Penrose-Inverse) 



Control by Keyframes 
Keyframe Motions: 
Trajectories are traversed by transitions  
between keyframes (predefined poses) in predefined times. 
 
They are given as sequences  
or nets of keyframes. 
 
Branching in nets according 
to different situations 
e.g. user commands  
or sensor inputs.  
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Keyframes define 
„characteristic“ poses 
of a trajectory. 



Control by Keyframes 
 
For control of a keyframe motion,  
the actuators are controlled accordingly by a “keyframe player”, 
e.g. interpolation by automatically calculated intermediate poses. 
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Sensor feed back can be used to adapt the interpolated poses. 
 
Usually, keyframes are not changed during motion. 



Smoothness of keyframe motions 
Smoothness of keyframe motion is influenced  
By physical properties of (real) robots and environment,  
      e.g. inertia, friction, backlash, parameters of motors, … 
                                   (servo motors have separate controllers) 
By keyframe player: 
• Splines etc. instead of linear interpolation  
    can be used for smoothing (especially in simulation) 
 
By design of keyframes: 
• Designer of keyframes can introduce more keyframes at 
     „critical“ parts of the desired trajectory.  
• Machine learning can be used to optimize keyframes  
    (resp. the common result of keyframe and keyframe player) 
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Simple Physical Controls 
 
Control by simple physical processes without calculations, 
e.g.  

– Thermostat 
– Braitenberg vehicle 
– Dynamic Passive Walker (see below) 
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Model Based Motion Control 
Actuation for next pose(s) determined by some model: 
 
Calculation by some criteria to be maintained,  
     e.g. stability/balance by CoM, ZMP (see below). 
 
Actuator commands by  Inverse Kinematics  
     (for drives, for limbs …) 
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Motions of Legged Robots 
For unstructured terrain, stairs, … 
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Rollerwalker H+Y, Japan 
Lauron III  (Laufender Roboter, neuronal gesteuert) FZI Karlsruhe 



Statically Stable Balance 
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Projection of center of mass (CoM) within the convex 
hull of the ground contact points ("support-polygon") 

6 Legs 
2 Legs 

•   Stable walk with 4 legs:  
    Only 1 leg lifted with shift of weight  
•   Stable walk with 6 legs:  
    Simultaneous movement of 3 legs without shift of weight 



Dynamic Balance 
Projection of CoM may be outside of support polygon 
Appropriate movements prevent falling over 
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Dynamic Balance 
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Segway 



Equilibrium/Balance 
Static equilibrium:        Robot in persistent state    (e.g. standing) 
 
Dynamic equilibrium:   Robot in persistent motion (e.g. walking) 
 
After disturbance: 
• Return to equilibrium by itself:          Stable equilibrium  
• Further departure from equilibrium:  Unstable equilibrium 
• Indifference:                                       Indifferent equilibrium 
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Running patterns 
Complete cycle of all leg movements: 
       2 phases for each leg: 
• Support phase (stance): ground contact 
     contact points to body and ground determine joint angles 
• Transfer phase (swing): Free movement 
    trajectory to next attachment point determines joint angles 
 
Duty-factor = Percentage of the ground contact time 
e.g. Trot (always 2 of 4 feet on the ground): Duty factor = 0.5 
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Further details with more phases, e.g.:  
lift - move forward – put down – roll off 



Statically Stable 4 Legged Walk 
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R1. Shift CoM 

R2. Right hind leg in the air 

R3. Right hind leg on ground 

R4. Right front leg in the air 

R5. Right front leg on ground  

L1. Shift CoM 

L2. Left hind leg in the air 

… 

 



Statically Stable Walk 
Robot can stop at any given time in statically stable balance. 
Transitions between statically stable balance states. 
 
CoM always above support polygon. 
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Statically stable walk with 6 legs: 
Always 3 feet on the ground 
CoM above support triangle 



Statically Stable Walk of Humanoid 
  

Burkhard Cognitive Robotics  Motion 41 

Diploma Thesis 
Oliver Welter 

Robots Preparing To Defeat Humans in Soccer.avi

Projection of CoM 



Design of Static Stable Walk 

Control of the legs by means of inverse kinematics, 
calculation along the kinematic chains: 
• Define path of CoM 
• This defines connection points between body and legs 
• Foot point of standing legs 
• Trajectories of moving legs 

Burkhard Cognitive Robotics  Motion 42 

Motion by transitions between static stable equilibriums 

Further parameters by optimization methods   



Dynamic Walk  
 
No universally accepted definition 
(“not statically stable walk”) 
 
Unlike stable running:  
CoM at least temporarily outside support polygon  
(not statically stable equilibrium when interrupting) 
 
Possible definiton by 
"dynamically stable equilibrium" for trajectory 
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„prevented falling over“ 
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Humanoid Robots 

45 



Biped Walk (Humanoid Robots) 
Statically Stable Walk: Projection of CoM inside support area 
- slow “walk” 

 
 
 
 
 

Dynamic Walk: Projection of CoM may be outside support area 
-  faster walk 
-  problem: how to prevent from falling 
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Diploma Thesis 
Oliver Welter 



Model Based Dynamic Walk 
Calculate trajectories by physical models like 
• Inverted pendulum for stand leg 
• Pendulum for swing leg 
• Center of Mass 
• Zero Moment Point (ZMP) 
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Problem: 
Model based control needs  
precise hardware. 
 
No elasticity as in nature. 



Zero Moment Point (ZMP) 
„Its first practical demonstration took place in Japan in 

1984, at Waseda University, Laboratory of Ichiro Kato, in 
the first dynamically balanced robot WL-10RD of the 
robotic family WABOT. The paper gives an in-depth 
discussion of source results concerning ZMP, paying 
particular attention to some delicate issues that may lead 
to confusion if  this method is applied in a mechanistic 
manner onto irregularcases of artificial gait, i.e. in the 
case of loss of dynamic balance of a humanoid robot.“ 

 
(Introduction M.Vucobratovic, B.Borovac:  
„Zero-Moment Point: 35 Years of its Life“) 
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Zero Moment Point (ZMP) 
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Forces and moments in single support phase are considered: 
Forces/moments acting on the support foot:  
      Influence of body to ankle, gravity, ground reaction, friction. 
Dynamic equilibrium: 

•  horizontal moments Mx = My = 0 
     at CoP (= center of pressure) of foot 

 
 
  

If such a point does not exist inside support polygon, 
the robot will rotate over the foot edge and overturn.  

“Zero-Moment-Point”  if inside (!) support polygon. 

Different (sometimes conflicting) definitions in the literature. 



Zero Moment Point (ZMP) 
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Possible relations between ZMP and CoP :  
(a) dynamically balanced gait,  
(b) unbalanced gait where ZMP does not exist and the ground 

reaction force acting point is CoP while the point where Mx = 
0 and My = 0 is outside the support polygon (FZMP). The 
system as a whole rotates about the foot edge and overturns, 

(c) tiptoe dynamic balance (“balletic motion”). 

M.Vucobratovic, B.Borovac:  
„Zero-Moment Point: 35 Years of its Life“ 



ZMP Control 
Condition for dynamically stable walk: 
ZMP within support polygon (projection of CoM may be outside) 
 
Conditions for control using ZMP: 
• Keep ZMP of stand leg inside support polygon 
• ZMP of swing leg inside support polygon at touch down 

 
Define Trajectories (e.g. by forward simulation):  
• Maintain conditions  
    (e.g. by related shift of CoM using hip) 
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Different implementations. 



Calculation of ZMP 
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By laws of mechanics along kinematic chain 



Approximated Calculation of ZMP 
Calculate ZMP = CoP (Center of Pressure) on feet 
                          (as long as not on the foot edge) 
ZMP as result of measured forces at the feet 
                          (cf. FRP in SimSpark) 
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Image: 
Diploma thesis 
 O. Welter 



Approximated Calculation of ZMP 
Calculate ZMP from CoM by physical model: 
CoM at the top of stand leg as inverted pendulum 
Forward simulation for optimal ZMP positions 
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Image: 
Yuan Xu (NaoTH) 



Zero Moment Point (ZMP) 
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Displacement of the projections of CoM (red) and ZMP (blue) 
while walking (Diploma thesis  O. Welter) 
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Machine Learning, Optimization 
Many parameters are used for control. 
Problem of optimal choice, optimization 
e.g.  by 
• Gradient descent 
• Evolutionary methods 
• Reinforcement learning 

 
     
 

Burkhard Cognitive Robotics  Motion 57 

-Experiments with real  
   robots are expensive 
-Experiments with simulated   
  robots are not strictly   
  equivalent  
 
ØCombination of both. 

 
ØPhD thesis of Yuan Xu 

Fitness (Quality) of walk:   
•duration 
•speed 
•accuracy of path 
•energy consumption 
•aesthetics 



Machine Learning, Optimization 
Simloid (Diploma thesis Daniel Hein): 
Evolved walks of simulated Bioloid 
 
 
 
 
 
 
 
          Transfer to real Bioloid 
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Case Study: Optimized walk for AIBO 
Diploma thesis Uwe Düffert 2004 
• Optimize omnidirectional walk 
• Calibrating the running movements (correct control) 
 
 
 
 
Automate: 
• Learning process 
• Tests 
• Evaluation (test environment) 
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Walk parameters:  
Forward velocity  dx/dt 
Sideward velocity dy/dt 
Rotation velocity  df/dt 



AIBO: Requirements for Walk 
Omnidirectional walk: 
• walk in any direction  
        (forward, backward, sideways, diagonally)  
• rotate while walking 
• smooth transitions between the directions 
    (Without "stop" or “switch") 
• high speeds possible 
• correct implementation of the required movements 
• aesthetics 
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Optimization: Find optimal walk 

Example course for learning 



AIBO: Basic Design Decisions 
Define trajectory of CoM (according to desired path). 
       This defines coordinates of shoulders. 
Define foot positions by “Wheel model”  
      according to desired path 
      (maybe with slipping during changes). 
Duty factor = 0.5:  
      Only the 2 diagonally positioned feet have ground    
      contact (not statically stable). 
Define trajectory of feet according  
       to given curve template. 
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ICC 



AIBO: Parameters for Optimization 
Reduce parameters to few parameters which  
• have great impact 
• can be predefined  
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1. Rest position of feet relative to the body 
2. Trajectory of the legs (height, length) 
3. Gait: time points for swing and stance 



AIBO: Decomposition of Task 
 
Experience: Optimal parameter sets for fast forward walk  

are not optimal for fast backward etc. 
 
Consequently:  Different parameter sets Pi = (pi1,...,pin) for 

different requirements Ai : 
 
In total: 127 different requirements for  
• Direction (8 values​​) 
• Ratio Walk/Turn (7 levels) 
• Speed (3 levels) 
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Not all combinations are used. 
The combinations are more 
uniform than a combination by 
forward/sideways/turning speed. 



Ratio 
Walk/Turn 

Direction 
of Walk 

     Speed 

        slow   middle    fast   

     right               left          

AIBO: Decomposition of the Task 
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     and restriction to discrete values          



AIBO: Setup of Experiments 
Optimization by evolutionary methods: 

– Fitness of parameter sets (individuals) P = (p1,...,pn) 
evaluated by walks in real environment 

– Fitness by correspondence to required path and time 
 
Automatization of  experiments  
by appropriately designed environment: 

– Robot tries to walk according to required path and time 
– Robot measures path and time using special landmarks 
– Robot evaluates fitness by comparing actual with 

requested path and time  
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AIBO: Setup of Experiments 
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Landmarks for orientation 
 
•  Used for determining control requirements and path 
   corrections 
 

•  Used for evaluation of actual path (fitness) 

Image by AIBO Camera  

with identified landmarks 



AIBO: Fitness F(P) 
 
 
 
 
dx/dt : average speed in x direction (along the course) 
Dy : average deviation of y-position (distance to requested line) 
Df : averaged deviation from requested direction 
d2z/dt2 : averaged acceleration in z direction 
             (unpleasant hard pounding) 
pblind : percentage of images where landmarks are not identified 
            (strong deviation or strong vibration) 
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AIBO: Experiments 
Optimal parameter  Pi = (pi1,...,pin)  
were determined for the 127 walk requirements Ai  by  
- Evolutionary methods for some (not all) requirements 
- Good parameter sets already known and evaluated 
- Regarding good transitions between adjacent 

requirements 
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AIBO: Calibration 
Calibration is needed for good match of requested and 

actually achieved speed 
 
Measurement for low / medium / high speed     
               without              resp.             with calibration 
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AIBO: Further Options: 
Pre-evaluation and selection of parameter sets before test with 

real robot by 
• Comparison with similar known parameter sets 
• Simulation 
• Hill Climbing in parameter space 

 
More complex trajectories of feet 
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Much efforts in RoboCup:  
§  Dortmund (Ingo Dahm and others) 
§  NuBots (Michael Quinlan) 
§  Austin (Peter Stone) 
Speeds of up to 50cm/sec  
(2-times length of body) 
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Biological Models 
Can be exploited for 
Hardware, e.g.: 
• Mechanical design (legs, elasticity,…) 
• Actuators  (muscles, tendons, springs…) 
• Sensors (skin sensors, … ) 
Software, e.g. 
• Control loops 
• Local/distributed control 
• Dynamic systems control 
• Perception, sensor data integration 
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Biological Models 
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Emergence: 
Complex behavior emerges from 
simple principles by clever design 
Situatedness: 
Appropriate behavior emerges by 
Appropriate interaction with the environment 
 Examples: 

• Put the foot down until ground reaction is sensed on foot 
(knee, hip, proprioceptive sensors …) 

• Move the arms, the upper body etc. 
      to compensate acceleration (prevent from falling) 
• Shift of CoM at slopes 



Mechanical Design 
Passive walker 
• Inverse pendulum (Stand leg) + Pendulum (Swing leg) 
• High center of gravity (hip) 
• Additional compensation by arms 
• Energy-efficiency 
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Cornell University 



Mechanical Design 
Body Shape: 
 Walking emerges from well 
designed shape 
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Blickhan, Seyfarth (Jena) 



Mechanical Design: BigDog 
(Boston Dynamics) 
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Mechanical Design 
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http://www.bostondynamics.com/img/BigDog_Overview.pdf
c 



Mechanical Design 
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http://www.bostondynamics.com/img/BigDog_Overview.pdf 



Mechanical Design and Control 
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http://www.bostondynamics.com/img/BigDog_Overview.pdf 



Central Pattern Generator (CPG) 
Hypothesis:  
Cyclic motions of animals (walk, fly, swim, wind, …) 
are controlled by oscillating CPG. 
 
Oscillations can be produced by  
• Sine-Function(s) 
• Recurrent Neural Networks 
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Oscillations by Sine Function(s) 
The trajectory of a joint (e.g. knee joint) oscillates 
while following the sine function as motor control: 
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A = amplitude (vertical scaling) 
w = angular frequence (horicontal scaling) 
f= phase (horicontal shift)  
offset (vertical shift) 

time 

angle 
angle(t) = offset + A sin(w t + f) 

offset 



Oscillations by Sine Function(s) 
More complex oscillations are performed by combinations 
of different sine functions (cf. Fourier-series) 
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angle(t) = offset + A1 sin(w1 t + f1) + A2 sin(w2 t + f2)  

time 

angle 

offset 

Examples of more complex curves (from Dipl.Thesis D. Hein): 



Biology 
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Images: S.Lipfert 
Locomotion Lab. Jena 

Trajectories of human joints 
during walk (1,5 m/sec): 
 
•Right hip 
•Right knee 
•Right ankle 
 



Neural Network Oscillators: Example 
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a1(t + 1) = a tanh( w11 a1(t) + w21 a2(t) ) 
a2(t + 1) = a tanh( w12 a1(t) + w22 a2(t) ) 

w11 w22 

w12 

w21 

a1(t) 

N1 N2 

a2(t) 

At each time t, the neurons N1 and N2(t)  are activated  
by a1(t) resp. a2(t)  which are recursively computed:  
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Neural Network Oscillators: Example 
 
 
 
 
 
Simplified special case without tanh, and 
w11 = w22 = cos(f) , w12 = sin(f) , w21 = -sin(f) 
for some f and a = 1 : 
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Neural Network Oscillators: Example 
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1The Matrix  W=                      defines rotations of a(t) =  
in the a1-a2-space,  
i.e. 
(quasi-)periodic behavior 
of a1(t) and a2(t)  
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Neural Network Oscillators: SO(2)-Network 
 
 
 
 
 
with tanh 
w11 = w22 = cos(f) , w12 = sin(f) , w21 = -sin(f) 
for some a , f : 
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a1(t + 1) = a tanh (cos(f) a1(t) -  sin(f) a2(t) ) 
a2(t + 1) = a tanh (-sin(f) a1(t) + cos(f) a2(t) ) 

cos(f) cos(f) 

sin(f) 

-sin(f) 

a1(t) 

N1 

a2(t) 

N2 

“Special Orthogonal  
Group”  SO(2)  



Neural Networks: tanh 
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tanh and a gives more flexibility in the behaviors, 
e.g. decreasing/increasing amplitudes (next slide). 

tanh(x)= (ex -e-x )/(ex+e-x)  
           = (e2x -1)/(e2x+1) = 1–2/(e2x+1)  

-1 

1 tanh 

The activation of a Neuron Ni is computed by  
       ai(t+1) =   tanh (Sj=0,..,n wji aj(t)) 
where wji is the weight from Neuron Nj to Ni 
(a can be integrated to weights wji ) 

… 



Neural Network Oscillators: Example 
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a1 

Diploma Thesis 
Daniel Hein 



Neural Network Controllers 
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Nets can be connected with other nets,  
e.g. for synchronizing pairs of joints  

Nets can get inputs from other neurons,  
e.g. sensor data which can 
-  start oscillations 
-  modify oscillations  
-  stop oscillations  
by changing the activations in the net. 



Neural Network Controllers 
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Motion measuring sensors  
(e.g. acceleration sensors) 
can be integrated  directly 

Nets can be connected with 
a joint control  
for oscillating movements 



Neural Network Controllers 
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If weights are adjusted accordingly, 
the acceleration sensors (in the shoulders) 
and the motor control neurons  
build an oscillating system 



Case Study Simloid  
Neural Net Controller for Simloid  
(= simulated robot Bioloid from Robotis) 
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Diploma Thesis 
Daniel Hein 
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with bias qi for offsets 

Simloid:  Neural Net controller  
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Simloid: Evolution of Neural Net controller  
Optimal weights wij of the Net were determined by evolution:  
 
Parameters:  
• 57 weights for 19 joints (6 per leg, 3 per arm, 1 waist) 
   + 4 weights for oscillator 
• Reduction by left/right symmetry assumption: 34 parameters 
 
Individuals:  (p1,…,p34) with ranges (-4,4)  
 
Fitness:        Distance covered in a given constant time 
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Simloid: Evolution of Neural Net controller  
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Simloid: Evolution of Neural Net controller  



Simloid: Experiments Sensor Coupling  
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Simloid: Experiments Sensor Coupling  
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Simloid: Experiments Sensor Coupling  

Burkhard Cognitive Robotics  Motion 101 



Simloid: Some results 
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Simloid: Transfer to Bioloid (A-Series) 
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Evolved Neural Nets for Bioloid (A-Series) 
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(with another simulator from ALEAR project) 

Evolved Neural Nets for Bioloid (A-Series) 
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